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ABSTRACT

Compiler writers continue to search for a reliable method of ayntactic error

recoverV. Spurious error reports and confusing diagnostics are common problems

confronting the programmer. Innumerable error possibilities have made recovery

design a frustrating task.

This thesis implements a method of syntactic error recovery using recursive

calls on the error recovery routine. Parsing is accomplished by traversing

transition diagrams which are created from syntax charts. Key language symbols

and dynamically generated recovery positions are used in restoring the parse.

High-quality error diagnostics give a clear, accurate, and thorough description of

each error, providing an excellent instructional software tool. Approach and

implementation issues are discussed, and sample output listings are included.
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1. INTRODUCTION

Syntax error recovery presents a most difficult challenge for the compiler

writer. For a compiler to be a useful software tool, it must accurately recognize,

analyze, and recover from syntax errors. The primary objective of syntactic error

recovery is to permit the parsing mechanism to advance beyond the point of error

detection in order to find and report subsequent errors to the programmer. Many

strategies have been developed to recover from syntax errors, and while they may

differ substantially in approach, they generally are concerned with the following

goals:

(1) Detecting as many errors as possible

(2) Recovering from each error to permit parsing of the remaining text

(3) Generating thorough diagnostic information so that the user may fully

understand the error

All syntactic recovery methods can detect the presenee of at least one error,

but none can guarantee a successful recovery from every error. Since it is

impossible to know the intent of the programmer, it is imperative that compilers

effectively communicate with the user by issuing accurate and informative error
messages and minimizing spurious error reports. One of the major goals of this

research is to improve the diagnostic aspect of syntax error recovery.

A. MOTIVATION

The parser detects a syntax error when the current input symbol prohibits

the construction of a legal sentence in the language, i.e., the parser has entered a

state from which it is unable to proceed. All detected errors fall into one of three

categories: commission, omission, or substitution. An error of commission occurs *

when the parser encounters an extraneous lexical token which, if deleted, would

result in a syntactically legal sentence. An error of omission means that inserting

a lexical token into the input stream would yield a legal sentence. An error of

P.26



substitution means that the parser has found an incorrect token; replacement is

required to produce a valid sentence. Many strategies for recovery from syntax

errors assume one of the situations above. Some techniques effect a repair of the

error, via symbol insertions and deletions, while some search for a

synchronization point from which the parser can regain control as if no error had

occured. But which of the three kinds of errors is present? In some cases,

determining the kind of error may not be difficult since the surrounding context

provides information with which to analyze the error properly. However,

consider the case where the real error occured much earlier in the source program

and the detected error actually represents a symptom of the problem. In Pascal,

for example, an extraneous "begin" in the middle of a program could remain

undetected through several lines of code before a missing "end" is discovered.

The same holds true for a deletion error where, for example, a missing "if x > y

then" is actually the cause of an error which is detected later at "else". In

situations such as these, the syntactic analyzer identifes the location of the error

symptom, initiates a recovery, and outputs a message which is likely to be an

erroneous or confusing description of the actual problem. More often than not,

the parser loses synchronization, causing further problems with spurious errors,

cascading error messages, and large portions of unparsed text.

Efforts to circumvent these problems take many forms. It is most difficult to

design an error recovery scheme that blends recovery accuracy, security, and

error message quality. The approach presented in this thesis seems promising in

that regard. To establish a proper foundation for understanding the design, the

following section reviews some of the previous efforts in syntactic error recovery.

B. BACKGROUND

Compiler error recovery methods are well documented in the literature.

Since error recovery is a critical aspect of compiler design, many methods have

been tried.

The most common form of syntax error recovery is a method referred to as

the panic mode. This language independent technique is conceptually simple and

7 ....
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easily applied to both top-down and bottom-up parsing algorithms. The scheme

is based upon recovering only on a major terminating symbol, such as or
"end". Thus, if an error occurs near the beginning of a statement construct, for

example, then text is discarded by the recovery routine until an end-of-statement

token is recognized in the input stream. Although this method offers safety, its

primary disadvantage is obvious: errors in the discarded text remain undetected.

Despite the relatively primitive nature of the panic mode, the concept of

synchronizing on key symbols is found in a number of different approaches.

Some of the earlier work in syntax error recovery concerns minimum distance

corrections. This refers to the minimum number of symbol insertions, deletions,

or replacements required to render an erroneous string valid. Aho and Peterson

[Ref. 1] devised an algorithm that transformed strings in a time proportional to

the cube of the length of the string by adding error productions to the language

grammar. Lyon [Ref. 2] also investigated minimum distance error corrections

using dynamic programming to choose from among possible corrections; however.

these methods were mainly unfeasible. Levy [Ref. 3] simultaneously parsed

potential correction paths from the point of error, one for each recovery

possibility; however, the computations required often exte. I beyond a reasonable

implementation limit.

Graham and Rhodes introduced an error recovery method called phrase-level -.

recovery [Ref. 4]. This technique was initially configured for operator precedence

parsing and later modified by Penello [Ref. 5] for use in LR analysis. Phrase-level

recovery analyzes the error by examining its surrounding context, where the

objective is to replace the phrase containing the error with a phrase that is

syntactically valid. This is accomplished by a two-phase procedure consisting of

a condensation (analysis) phase followed by a correction phase. The

condensation phase involves bracketing the error context by means of a backward

move, which attempts to perform further reductions on the stack, and a forward

move, which endeavors to parse text beyond the location of the detected error to

select the optimal repair. Although an accurate recovery is often possible with

this approach, the primary disadvantage, as with all repair strategies, is that

8.°
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adequate repair becomes impossible if the parsing mechanism loses

synchronization with the input stream.

Many error recovery schemes aim primarily at correcting single token errors,

i.e., single errors of commission, omission, and substitution. However, one

scheme which is oriented toward resolving a cluster of errors is discussed in Tai

[Ref. 6]. This technique involves pattern matching forward of the error location,

and is called a k-correct lookahead corrector. This means that k correct symbols

must be found forward of the error to enable correction. Thus, each pattern

represents a different string containing the error, where the closest pattern ..-

matching the input sequence is selected as the solution. Two major problems are

inherent in this approach: the possibility of additional errors in the text forward

of the detection point, and the fact that the choice of pattern used to effect the

correction may depend on the symbol which follows a nonterminal whose

expansion might involve a large number of tokens.

Ripley and Druseikis [Ref. 7] studied Pascal programming errors primarily to

ascertain the validity of assumptions made by compiler writers in developing

syntax error recovery techniques. One of the major results of this effort, based

upon data obtained from several hundred student programs, was that most

programming errors (almost 90%) are single token errors. Additionally, the

observed error density was notably sparse, indicating that a recovery approach

based upon repairing error clusters might not be the best choice. Thus, repairing

errors local to the point of detection on the assumption that the damaged string

represents a single error of commission, omission, or substitution appeared to be

optimal in view of the study's results.

Fischer, Milton and Quiring [Ref. 8] developed an LL(1)-based insertion only

algorithm, designed for implementation via a parser generator, where lexemes

have associated editing costs which provide the basis for selecting the appropriate

corrective action upon error detection. This notion of editing costs, or weighting [ "

values, emerged from the work of Graham and Rhodes [Ref. 4], in which the cost

of symbol insertions, deletions or replacements corresponds to the number of

changes required to the parsing stack to effect the repair. In the insertion-only

9%[ ".



technique, only the costs of inserting symbols are computed since deletion or

replacement repair is not performed. Anderson and Backhouse [Ref. 9] improved

upon this approach by using a factorisation lemma introduced by Backhouse

[Ref. 10]. This lemma modified the recovery algorithm to compute the editing

costs required to effect the first repair action instead of the complete repair.

Thus, if the insertion of a three symbol string was required to restore the parse, .

the repair routine would be called three times before completely recovering from

the error. This strategy reduces storage requirements and the size of the parsing

tables at the expense of repeated calls to the repair routine.

The concept of editing the input string at the point of error detection was

extended to include deletions and replacements in a locally least-cost error

recovery approach [Ref. I1]. Implementation was accomplished via a parser

generator which output a recursive descent analyzer based upon input BNF

descriptions and editing-cost data for each terminal symbol in the grammar.

This approach calls for string-edit operations based upon weighted values (cost)

computed at point of error, and is applicable to LL(1) and LR(1) parsing

algorithms, or any which possess the valid prefix property, i.e., report the

presence of an error immediately after reading a symbol which does not permit

continued parsing. One advantage of this method is that the costs may be

modified either to create a certain level of recovery sophistication or to allow

tailoring of recovery computations (editing costs) to take advantage of the most

prevalent errors or error patterns. The primary disadvantage, however, is that

since corrective action is strictly local to the point of detection, the wrong symbol

may be inserted or deleted due to the absence of context information. Thus. an

editing operation which is performed on an "error symptom" could be potentially

diastrous.

Pai and Kieburtz [Ref. 12] also used local optimal syntax error repair but in

conjunction with a global context recovery, thereby forming a two-level strategy.

In this method, local repair is performed on a detected error, however, if this is

insufficient, a global algorithm is invoked. Global context recovery discards
tokens in the input stream until a fiducial, or trustworthy, symbol is encountered.

10
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The stack is then adjusted to resume parsing beginning with this symbol.

Barnard and Holt [Ref. 13] also discuss the use of synchronization symbols to

perform hierarchic error repair. In this method, a separate synchronization stack

holds potential recovery symbols for each nonterminal as it is being expanded

during the parse. Should an error be detected, input is discarded until one of the

synchronizat n symbols is found, at which point the parser is returned to a non-

error state consistent with the chosen symbol.

Although many error recovery strategies are repair oriented. Richter has

recently proposed a noncorrecting method of error recovery [Ref. 14]. In this "

technique. the symbol following the point of error detection is selected as the

recovery point. The error is not corrected, but rather the remaining text is

examined to determine whether a valid language suffix follows the error, in a

process called "suffix analysis". The primary objective of this approach is to

improve the accuracy and content of user error messages, and to prevent the

generation of any spurious errors during the syntactic analysis. One shortcoming

observed thus far, however, is that error detection of improperly nested contructs

may be masked by the presence of an error that is internal to the scope of the

construct.

In another non-repair strategy. Turba [Ref. 15] discusses an error recovery

approach that parallels the exception handling mechanism in the Ada

programming language. This technique has been implemented for LL(k)

grammars in several programming languages, and is based upon user-defined

recovery positions consisting primarily of the terminating symbols for each

syntactic unit. Recovery sets are statically specified, and therefore do not

necessarily correspond to the dynamic state of the parse at time of error. Thus,

the potential exists to recover on the correct symbol in the wrong context. This

method, while relatively similar to the panic mode, nevertheless takes advantage

of more potential recovery points and avoids discarding large quantities of input

while performing the recovery.

11J
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This thesis implements a top-down syntax error recovery method developed

by R. W. Floyd. Although Floyd's approach is quite different from *those

discussed above, a few of the concepts mentioned, particularly the notion of

fiducial symbols, have been embodied in the design. Syntactic analysis is

performed by traversing transition diagrams, and the parsing and recovery

mechanisms function recursively in response to detected errors. A complete '*,.,

discussion of the approach is presented in Chapter Two.

C. SCOPE OF THE THESIS

This thesis is an implementation of a Syntactic Analyzer that performs

parsing and error recovery operations on Pascal programs. The Analyzer's

processing capabilities include all syntax-related functions present in a full

compiler implementation: lexical analysis, syntactic analysis (parsing), and

syntactic and lexical stage error handling. Semantic analysis and code generation

are not performed. The Analyzer accepts source program text, determines its

syntactic validity, analyzes and recovers from detected errors, and outputs

detailed diagnostics that identify and describe each error.

The design of the recovery scheme in the context of transition diagram

parsing and the overall structure for the implementation were developed by

R. W. Floyd. Software implementation of the Syntactic Analyzer, coding

decisions, background research, and testing analysis are the accomplishments of

the author.

D. IMPLEMENTATION STANDARD

The Syntactic Analyzer complies with the Pascal Language Standard

approved by the International Standards Organization (ISO) in 1982 as "ISO

7185 Pascal Standard" [Ref. 16]. It must be noted that the Standard contains a

provision for two versions of the language, Level 0 and Level 1 Pascal, where

Level 1 incorporates the specification for conformant array parameters. The .

American National Standard (ANSI/IEEE 770X3.97-1983) is identical to Level 0

Pascal. The implementation in this thesis supports Level 1 Pascal.

12

,*,- o ~~~~~~~~~.. .. . . .... .. .- . . .. o..-- o a, ,i, ,o - .- o. o- , o-



Although Pascal was used to test the approach, the method described is not

limited to Pascal. Parsing and error recovery algorithms are not dependent upon

the implementation language.

E. THESIS ORGANIZATION

Chapter Two presents the design approach for both the parsing and error

recovery mechanisms. Included are some examples of the actions performed t

during recovery that illustrate the recursive relationship between the normal

execution and recovery modes of the syntax analysis. The basis for error message

generation is also presented here.

Chapter Three discusses implementation considerations. The emphasis is on

the components of the Syntactic Analyzer in terms of data structures, control

structures, and program design decisions.

Chapter Four discusses testing of the syntactic analyzer and the strengths_.

and weaknesses of the error recovery method when applied to Pascal programs.

The appendices contain sample output listings, the diagram parsing specification,

and the program listings with associated coding-level documentation.
°% q
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II. APPROACH

The design approach for the Syntactic Analyzer is governed by two major

objectives: to provide the user with accurate and thorough error diagnostic

information and to detect as many source errors as possible to avoid repeated

compilation. Error recovery design is based upon recursive calls to the error

recovery routine, using intermittent returns to the parsing mode prior to

recovering from the error. This method does not involve an insertion or repair

strategy, but rather is consumption-based, discarding lexical tokens until a

synchronizing symbol is encountered. Syntactic analysis is performed using the

graphic design of language syntax charts to generate implementation data

* structures. Both parsing and error recovery operations are controlled by a stack,

permitting recovery symbol generation to depend on each active context. The

* remainder of this chapter is devoted to the design and operation of both the

parsing and error recovery mechanisms.

A. SYNTACTIC ANALYSIS

Syntactic analysis is accomplished by using stored language syntax diagrams

to perform a top-down LL(1) parse of input text. Diagrams are traversed via an

iterative controlling routine, using a parsing stack to hold nonterminal activation

* records during symbol expansion. Since the syntax diagrams are an integral part

of the approach and form the basis for both syntactic analysis and error recovery,

the concept of parsing from a diagram is discussed in detail below.

1. Diagram Structure and Composition

Syntax diagrams are nothing more than graphic depictions of the produc-

tions in the language grammar. They are composed of three entities: circular or

elliptical figures, rectangular figures, and a series of connecting lines. The circular

figures represent language terminal symbols, the rectangular figures denote non-

terminal symbols, and the lines are path.. which join the various syntactic units.

14
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All information required to parse an input string is actually contained within the

diagrams. The parsing and error recovery mechanism used here is guided by a

transition diagram derived from the syntax diagram. The transition diagram may '

be thought of as a flow chart representation of its syntax diagram counterpart.

Transition diagrams are formed from the syntax charts by specifying the paths of

the charts as either true or false exits from each syntactic unit. Each nonterminal

symbol is represented by a separate diagram. A transition diagram suitable for

conducting parsing operations is created from a syntax diagram by ensuring that

a deterministic path is provided at each branch point. The term box will be used

to refer to the terminal and nonterminal symbols in a transition diagram.

2. Diagram Traversal

Parsing is accomplished by traversing the transition diagrams, following

true or false exit paths from each box encountered. To explain how exit paths

are labeled as true or false, we need to define some terms and illustrate their use.

Syntactic analysis is performed by an LL(1) parse of the input string.

LL(1) means that the next symbol determines which production is followed where

a choice between alternatives exists. A lexeme is consistent with a terminal box

if it is identical to the lexeme associated to the box. A lexeme is consistent with

a nonterminal box if it can occur as the first lexeme in a string derived from the

nonterminal. A true exit from a box occurs when the box has consumed a string

of the corresponding type. In particular, if a box is a terminal box, then a true

exit occurs from this box after the single associated lexeme is consumed. A

false exit from a box occurs when the first lexeme examined is not consistent with

the box. In particular, if the box is a terminal box, then a false exit occurs if the

current lexeme is not the lexeme associated to the box. The important point

concerning a false exit is that no input is consumed. A third type of exit called

the error exit is used to control error recovery. Error exit paths are not shown

,-. explicitly in the diagrams but their occurence is implied. An error exit occurs

?. from a box if after consuming non-empty input, the box is unable to find valid

input. A specific occurence of an error exit will be illustrated later in an example.

The last term to define is commitment. When a box is entered, the current

• .... "- °.-
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lexeme is found to be consistent and input is consumed. Once this occurs, we say

that we are committed to a true exit from this box.

true true 4

false

S 2 true A2 true

false

A3 true A3 true

&

*k

Figure 2.1 Syntax vs. Transition Diagram

Figure 2.1 illustrates the diagram convention. Notice the explicit representation

of the true and false exit paths, where true paths leave boxes to the right and

false paths emerge downward. Notice also how it is easier to visualize a false exit

path from a transition diagram than from a syntax diagram. Remember, though,

false exits do not indicate that the box was actually entered, but only that it was .;.-,."

examined for entry. In Figure 2.1, if an instance of Al is found, a true exit is

taken and input is consumed; otherwise a false exit to A2 is taken and no input is

consumed. If the first lexeme is consistent with Al, thereby eliminating A2 and

A3 as alternatives, but an instance of Al is not found, then an error exit is taken

which is not shown explicitly.

-- p:Z-
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Simple"f II
I Expression +TERM +

Ic r

SR eturn
Sfalse

Figure 2.2 Transition Diagram for Simple Expression

Now let's see how a diagram is traversed. Figure 2.2 shows the transition

diagram for Simple Expression. Notice the dotted box which encloses the

diagram. This outer box is shown in order to relate a box of type Al in Figure

2.1 to this illustration, i.e. we are effectively looking at the "inside" of a nonter- t

minal box, where the nonterminal box stands for the corresponding diagram (to

avoid infinite regress). Thus, parsing is accomplished by a series of recursive

diagram calls. Notice in Figure 2.2 the larger arrowheads containing "+" and "-".

These arrows correspond to the true and false exits shown above in Figure 2.1 for

Al, where "+" is used for true and "-" is used for false. The reason for the initial
downward extension on the false arrow from Box #5 will be discussed shortly. ,'. '

These exit paths, while true and false exits, have a special significance because

17' ,.



they indicate points where diagram traversal will conclude. These will be

referred to as return true and return false. The following definitions apply:

return true -- the transition diagram has consumed a phrase of the specified -.

type.

return false -- the diagram, by inspection of the next lexeme, found without
consuming input that no phrase of the type was present.

Now let's walk through the diagram in Figure 2.2 and see what can occur

at each box. The key to understanding the diagram parse is to realize that each

box must uniquely specify where to go for both true and false exits. A traversal

table of true and false exit paths will assist the reader in following the diagram.

Traversal Table

Box True False

I (adding operator) 2 4

2 (Term) 3 Error

3 (adding operator) 2 5

4 (Term) 3 Return
false

5 (or) 2 Return
true

Box #1 (adding operator) contains a true exit path to Box #2 (Term) and a false

exit path to Box #4 (Term). Box #2 (Term) contains a true exit to Box #3

(adding operator) and an error exit if Box #2 finds no "Term" and takes a false

exit. The only way an error exit can occur in Simple Expression is to consume

input at at least one of the boxes, and then subsequently look for a Term when

the current lexeme is not consistent with an instance of Term. It should be clear

that terminal boxes have no error exits, although they may lead to error exits of

enclosing nonterminal boxes. Boxes #4 and #5 contain the exits for Simple

Expression. If an instance of Box #4 (Term) is not found, then traversal has

completed in this diagram and control returns to the calling nonterminal box.
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Box #5 is the only box in the diagram from which an instance of Simple Expres-

sion is reported as true to its calling nonterminal. This box is particularly

interesting because a false exit from Box #5 ("or") results in a return true exit

from the diagram. Earlier, we alluded to the arrow first extending downward

and then to the right. This is because of the false exit from Box #5 followed by a

return true exit from the diagram. Finally, the purpose of the two Term boxes

deserves special mention. Note that an initial "adding operator" is optional since

Term is the first box in the diagram from which a true exit must be taken in

order to recognize an instance of Simple Expression. Now look at Figure 2.3.

si ....

Expression TERM TERM

LiL

This is a syntax diagram for Simple Expression contained in Grogono Iref. 17].

Notice the optional path around "adding operator" and observe that if a false

exit is taken from the leftmost Term box, there is no way to determine whether

input has been consumed. Conversely, Box #4 in Figure 2.2 can only be reached

K if input has not been consumed (during the current traversal). Thus, Box #4

enables a return false on Term if input has not been consumed and Box #2 con-

tains a false exit from Term if input has been consumed. This is typical of

*. .
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changes required to transform the syntax diagrams into deterministic transition

diagrams. Diagram implementation changes are discussed in Chapter Three.

3. Normal Execution

To summarize diagram traversal and control, parsing is performed by a

sequence of recursive calls on the transition diagrams which represent the nonter-

minal box expansions. A stack is used to hold nonterminal activations during - -

diagram traversal, and transitions occur according to the exit criteria described

above. When a nonterminal box is encountered, the header for the corresponding

diagram is located and transitions through this new diagram continue until either

a return true or return false condition is reached. Control then returns to the

nonterminal box in the calling diagram from which the true or false path is fol-
lowed based upon the exit condition. If an error exit is taken from a box, then

the error recovery routine is invoked.

B. ERROR RECOVERY METHOD

As mentioned above, the error recovery strategy involves recursive calls to

the error recovery routine. Error detection causes a recovery activation record to

be placed on the parsing stack, invoking the error recovery routine. While

recovery is active, input lexemes are discarded until a either a resynchronization

or restart symbol is found (the set of recovery symbols is described below). If the
symbol is a resynchronization symbol, the recovery activation record is popped, r
parsing mode is entered, and the recovery process is complete. If the symbol is a

restart symbol, the recovery activation record is not popped, and the parsing

mode is recursively entered, suspending the recovery process. Error recovery

mode resumes when the recovery activation record becomes the top record on the

parsing stack, continuing processing of the error which caused the initial entry ..-

into recovery mode from normal execution.
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This method of error recovery offers several advantages. One is that more

text will be parsed instead of discarded, permitting more errors to be detected.

Another advantage is that cascading errors are avoided because potentially good

text is not discarded while waiting for the "correct" symbol to appear (which

may be several lexemes beyond a good restart point). A third advantage to this

method is that the shared parsing/recovery stack, in conjunction with the

recursiveness of the error recovery process, enables the syntactic analyzer to parse

a large, heavily nested, error-laden language construct without risk of losing

synchronization. The sections which follow describe the composition of the

recovery symbol set, operation- of the recovery mechanism, and generation of L

error diagnostic information.

1. Recovery Symbols

The contents of the recovery set is a key factor in determining the

success of the error recovery. Two types of symbols comprise the recovery set:

resynchronization symbols and restart symbols, which cause recursive entry into

the parsing mode. All terminal boxes are potential recovery points in the

transition diagrams.

a. Resynchronization Symbols

The set of resynchronization symbols is created from the stack of

activation records upon entry into recovery mode following error detection. For

each activation record on the stack, the corresponding diagram is examined for

terminal symbols which are reachable by the paths from the box where the last

true exit was taken. For example, in the erroneous segment:

var next,last: integer, L

where the error is "comma instead of semicolon detected after integer", the

lexemes "' "" and ";" would be resynchronization symbols, since they are

the only terminal symbols reachable from the true exit of Type Denoter (see '2-
Figure 2.4); "var" is not a resynchronization symbol in this case.
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Var 

"'

e c l a r a t i o n 
v r,

atrue

I 
6

Figure 2.4 Transition Diagram for Var Declaration

Thus, searching the diagrams for recovery symbols is a matter of following true

and false exit box paths to the end of the diagram. Since each diagram with an

activation record on the stack is searched, the resynchronization component of

the recovery set is the union of all resynchronization symbols which are reachable

from the last true exit at any level of recursion. Should more than one recovery

activation (and therefore, more than one recovery set) be present on the stack

simultaneously, then the resynchronization set becomes a union of sets. Figure

2.5 depicts an erroneous Pascal code segment, the stack at time of error, and the

symbols generated at each level.

22 
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program test;

begin
x:= 1;
ifx > y > z then

writeln(x)
else

writeln (y)
end.

Stack:

If Statement ---- > "then", "else"

Statement

Compound Statement ---- > "end", ";"

Block

Program --- " >

Figure 2.5 Stack During Error Recovery

The error in Figure 2.5 is an illegal "If Statement", detected by the parser at ">"

following the Boolean expression "x > y". Notice that no symbols are generated

for Block since only nonterminal boxes (Const Declaration, Var Declaration, and

so forth) are contained in the diagram for Block, and also none are generated for

Statement, which (in this case) only calls If Statement. Recovery occurs as soon

as a lexeme in the input matches a symbol in the recovery set. Here, the recovery

occurs at the Statement level on then. If the set were to contain any duplicates,

such as two else symbols, then the symbol which is associated to the most recent

stack activation would be selected for recovery.

23
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b. Restart Symbols

Restart symbols cause a suspension in the recovery process and

reentry into the parsing mode of syntactic analysis. These symbols are responsible-

for the recursiveness of the recovery process and for parsing rather than

discarding text while performing a recovery. This set consists of symbols whose

position in the transition diagrams is unambiguous -- specifically, any lexeme "--

which occurs only once as a first symbol in a transition diagram. For example,

begin occurs only once in the diagrams, as the first symbol in Compound

Statement. However. var could signify either the beginning of Var Declaration or

of the sequence "var x: integer..." in Formal Parameter List, and therefore is not

a restart symbol. The recovery procedures associated with both the restart and

resvnchronization symbols are discussed later in this chapter.

2. The Recovery Mechanism

Entry into the recovery mode occurs either upon an error exit from the

transition diagrams or when the top activation record on the parsing stack is a

recovery activation from a previous error. In the latter case, resvnchronization

symbols have already been generated and the recovery simply "picks up where it

left off". Otherwise, a new error has been detected, a recovery activation record is

pushed onto the stack, and recovery set generation begins. %

The operation of the recovery mechanism is illustrated by two erroneous

Pascal programs. Consider the following code segment, which contains an error

that demonstrates the two types of recovery mode operations:

program test;
begin

if x > y than
while x < z do
x:= x + 1

else
begin...end;

writeln"
end.
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Recovery mode is initially entered upon detection of the identifier "than", where

the reserved word then was the required lexeme. The recovery set generated as a

result of this error includes, among other symbols, the lexeme else, since it is a

resynchronization symbol and it is reachable from the last true exit in the

transition diagram for If Statement. Since "than" is an identifier (which is not a

member of the recovery set), it is discarded by the recovery routine. The next

lexeme delivered from the lexical analyzer is while, which is a member of the

recovery set as a restart symbol. At this point, the recovery mode is suspended,

an activation record for While Statement is pushed onto the stack, the transition

diagram location pointer set to point at the while box, and normal execution

(parsing) mode is re-entered. The stack upon resumption of the parse is shown

below.

Top ----- >

While Statement
If Statement(RECOVERY)
If Statement
Statement
Compound Statement
Block
Program

Notice that the recovery activation for If Statement is still on the stack,

indicating that recovery for this nonterminal has not yet occured. After parsing

While Statement, the old recovery record is now visible, causing a recursive call

to the error recovery routine. Since the next lexeme is now else, and the

previously generated recovery set for If Statement included else, recovery will

occur immediately. The recovery record is then popped (since an error is not

pending for this activation) and normal execution is reestablished.
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Now let's examine a more complicated error sequence. The Pascal

program shown above has been modified to create multiple errors, which will

result in three pending recovery environments on the stack simultaneously:

1 program test;
2
3 begin
4 ifx > ythan
5 while x < z doo
6 begin
7 x:=x+l
8 if x > 0 then
9 z:= z- 1

10 end
11 else
12 begin.. .end
13 end.

The errors contained in the program above are as follows:

"than" instead of "then" in line 4

"doo" instead of "do" in line 5

a missing ";" in line 7

When the recovery routine encounters if in line 8, the stack is in the following

configuration:

Top ---- >

If Statement
Compound Statement(RECOVERY)
Compound Statement
While Statement(RECOVERY)
While Statement
If Statement(RECOVERY)
If Statement
Statement
Compound Statement
Block
Program
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Syntactic analysis of this program results a sequence of transitions between the

parsing and error recovery modes as listed below:

Recovery mode entered on "than" in line 4

Recovery mode suspended and parsing mode re-entered on while in line 5

Recovery mode entered on "doo" in line 5

Recovery mode suspended and parsing mode re-entered on begin in line 6

Recovery mode resumed on if in line 8

Parsing mode re-entered on if in line 8

Recovery mode resumed on else in line 11

Parsing mode re-entered and recovery mode complete on else in line 11

Upon recovering on the else in line 11, the recovery routine configures the stack

to permit parsing to resume in the context of the if in line 4. This also pops the

While Statement recovery activation, since the "while" construct is nested inside

the "if" construct.

The two examples above typify the operation of the recovery mechanism.

Chapter Four discusses several erroneous program segments to illustrate the

effectiveness and accuracy of the error recovery method.

3. Error Messages

The primary objective of this approach was to implement a syntactic

analyzer which could provide accurate and informative error diagnostics. By

developing the syntactic analyzer using stored transition diagrams, the data

required to generate high-quality error messages are readily available and

obtainable from the boxes themselves. Because error messages are based solely

upon information contained in the boxes, replacing or modifying transition

diagrams has little or no effect upon the error handling routines. The following

sections elaborate on the various components and procedures involved in the

error computation and generation process. Implementation issues concerning error

messages and error handler functions are addressed in Chapter Three.
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a. History List

The history list is a collection of box names that represents the

history of the parse within the current diagram at the time of error detection.

This list corresponds to those box names (terminal or nonterminal) from which

true exits were taken prior to entering the recovery mode. Thus, the following

segment

begin
x:- 1;
if x > y then

write(x);
else...

would generate the following history list upon detecting the error "statement

cannot start with "else":

begin <statement> • <statement>

This information is available by accessing the top activation record on the stack

(the current diagram being parsed). Each time a true exit occurs, the history list

increases by one. Thus, the user is provided a narrative summary that is

particularly useful in locating non-trivial errors or in finding errors that were

actually made earlier in the code, such as in a large, heavily-nested compound

statement.

b. Legal List

While the history list provides the user with a summary of correctly

parsed constructs prior to error detection, the legal list is concerned with "what

could have been". This list contains only terminal box names and consists of the

Select set, or all of the permissible terminal boxes in the syntax which could

immediately follow the box which represents the parser's last true exit prior to

the error. Thus, in the Type Declaration segment

type length = ..60;

28
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the following items below could immediately follow "=":

"identifier", "adding operator", "unsigned integer",

"unsigned real", "character string", "(", "

packed", "array", "record", "set", "file"

If a procedure block contained a "declaration out of order" error, such as

var i: integer;
type length = 40..60;

(where "type" must come before "var"), then the error would be detected at

"type" and the legal list would consist of "procedure", "function", and "begin

The legal list is set empty whenever a true exit is taken and augmented by every

terminal for which a false exit is taken.

c. Composite Message

The third component of user diagnostic information is the name of

the diagram in which the error was detected, which is simply the name of the

diagram for the activated recovery. So, combining the information components,

the erroneous segment

procedure compute(x,y: integer): integer;

would yield the following error message:

Bad "proc/func declaration"
Recognized: procedure identifier <formal parameter list>
Legal would have been: ";"

In addition to the narrative diagnostic aid, a pointer to the source

text marks the error location, and text discarded during the recovery process is

underlined so that the user will readily see which portions of the program were

affected. Additional discussion concerning these features and other error

implementation issues are presented in the next chapter.
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III. IMPLEMENTATION

The purpose of this chapter is to describe the primary modules of the

Syntactic Analyzer in terms of major implementation decisions, data structure

* employment, and the function of key subroutines. Discussion is divided into four

sections: lexical analysis, syntactic analysis, error recovery, and error message

processing. Although this chapter is concerned with certain implementation

details, specific coding-level and algorithmic comments are included with the

program listings in Appendix C.

A. LEXICAL ANALYSIS

The first phase of compilation is lexical analysis, which provides the interface

*between the input and syntactic analysis phases, and concerns combining

characters into single language units. The Syntactic Analyzer is configured for

one-pass analysis; however, since co-routines are used to implement lexical and

syntactic functions, lexical processing is discussed as a distinct phase. The input

* to the lexical anlayzer is a source program which is scanned as one continuous

* character stream, and the output is a sequence of lexical units called lezemes.

This section defines the Pascal language symbols and constructs which comprise

the lexeme set, and discusses the manner in which the input source text is

processed in order to produce the lexemes.

1. Language Symbols

This implementation recognizes all word symbols, special symbols, and

characters as defined by the Pascal Standard. The following describes the various

units of the language which are forwarded to the syntactic analyzer as lexemes.

a. Word Symbols

All Pascal reserved words become lexemes. In addition to the thirty-

* four reserved words, the required procedures "write" and "writein", as well as the

directive "forward", are also included among the word symbols.

30
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b. Special Symbols

All special symbols become lexemes. This category includes both

single character symbols, such as '+' and '-', as well as multi-character symbols

such as ':=' and '<>'. While all word symbols are given a unique lexical

representation, not all special symbols are regarded as different lexemes, i.e., '<='

and '>' both generate the same lexeme since they are syntactically equivalent as

a "relational operator".

c. Alternate Symbols

The Pascal Standard permits an alternate representation for selected

symbols, i.e., 'L' may be substituted for '' to denote a pointer, and each

alternate symbol is recognized by the Analyzer and processed as a lexeme.

d. Identifiers

Although some implementations may recognize an identifier at the

syntactic level, it is formed here in the lexical stage. An identifier is a letter

followed by zero or more letters or numbers in any combination.

e. Numbers

This category includes unsigned integers and unsigned reals. As with

identifiers, real constants are not formed at the syntactic level. For example,

56.5 is not recognized as

<unsigned integer> <period> <unsigned integer>

but rather is recognized as

<unsigned real>

In order to permit lexical handling of errors which occur in specifying constants,

an unsigned real number is recognized according to the following:

any sequence built from digits. ".", "E", "E+", "E-", and not starting with
"E" is treated as a (possibly illegal) number.

Thus, 1.23E-4+ will be recognized by the lexical analyzer as

<unsigned real><adding operator>

Processing of lexical stage errors will be addressed later in this chapter. _
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f. Character Strings and Illegal Characters

Any Pascal string constant becomes a lexeme. Any character scanned

by the lexical analyzer (except those contained within comments and string

constants) which is not a member of the Pascal Standard character set is

recognized as an illegal character and will result in the generation of an illegal

character lexeme. If successive illegal characters appear in the source text, then

only one error lexeme will be produced, as in:

type word = pack$#%ed array[1..20] of char;

but the following will result in three illegal character lexemes:

type word = pac#k%ed# array[l..20] of char;

where the illegal characters in the preceding examples are: #, $, and %. .

2. Lexical Analyzer Operation

The lexical analyzer, also known as the scanner, is divided into two

major subroutines for processing source text. One routine is responsible for word

recognition (anything beginning with a letter, which includes the reserved words

and identifiers), and the second routine generates lexemes for all other symbols.

The lexical analyzer communicates with the syntactic analyzer via a lexeme

buffer. The lexical analyzer performs a character-by-character scan of input text,

removing white space and line feeds until the packed group of character(s) forms

a lexeme. Control then returns to the syntactic co-routine (parser). The

following paragraphs briefly describe the structure and operation of the scanner's

two lexical processing components.

a. Word Identification

A word buffer holds scanned input until the current input character

is neither a letter nor a digit. Buffer contents are then compared against a stored ,

array of reserved words. If a reserved word is found, the array index is returned

as the lexeme; if it is not found, then an "identifier" lexeme is returned to the

calling routine.
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b. Symbol (non-word) Identification

The symbol identification section of the lexical analyzer is table-

driven and simulates the operation of a finite state automaton. A two-

dimensional array, indexed by current state and input symbol, is initialized with

the required transitions for each input symbol/state combination. Transitions

through the table continue until an accept state is reached, at which point the

lexeme for that state is returned. The table generates lexemes for all symbols

except identifiers and reserved words, and also filters any source text which is

enclosed within comment symbols.

B. SYNTACTIC ANALYSIS

Syntactic analysis is accomplished by means of a top-down. deterministic

traversal of transition diagrams derived from the syntax charts. Unlike recursive

descent parsing, where separate routines are developed to process each

nonterminal, this method is implemented with a stored transition diagram for

each nonterminal and an iterative controlling routine. It is important to note

that having the transition diagrams as data is essential to diagnostics and error

recovery. As in predictive parsing, activation records are explicitly stacked;

however, the records used here contain pointers into the transition diagrams. The

following sections describe the structure and implementation of the diagrams and

parsing mechanism.

1. Syntactic Analyzer Structure

The syntactic analyzer consists of two components: the transition

diagrams and a parsing stack. The diagrams are represented by a set of records

and the stack is implemented as a linked list.

As discussed in Chapter Two, diagrams contain boxes which represent

language terminals and nonterminals. Each box corresponds to one record in the

set and includes fields which specify box type, box name, lexeme code, true exit

pointer, false exit pointer, and for nonterminal boxes, a pointer to the

corresponding diagram. The parsing stack is implemented as a linked list of

records, where each element of the list is an activation record for one nonterminal N
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being parsed. Two kinds of records may be stack elements: one for normal

execution and one for recovery operations. The following describes the

information contained in each type:

Normal Execution:

a. return address -- the location of the parse (position within the

transition diagram) when the activation record is created

b. diagram head -- a pointer to the header box of the active diagram

c. location pointer -- current box postion in the diagram set

d. last true exit -- the last box within the active diagram which was

successfully recognized

e. history pointer -- a pointer to a linked list of all true exits taken in

the diagram while the activation record is on the stack l

Recovery:

a. diagram head -- used to identify the affected diagram for the error

message

b. last true exit -- provides a starting point for recovery set generation

c. recovery set pointer -- a pointer to the set of recovery symbols

d. parent record pointer -- used to point at the level of stack that

represents the diagram to which a recovery symbol belongs

2. Diagram Modifications

This section describes the changes required to the syntax diagrams to

create transition diagrams that permit accurate error position identification and

* deterministic parsing. As we alluded to in Chapter Two, it is insufficient merely

to extract published syntax drawings, create a box for each symbol, and create

pointers for each line. A complete set of transition diagrams for Pascal is

contained in Appendix B, and those boxes which pertain to the changes discussed

here are clearly marked. Diagram modifications may be placed in the four

categories described below.
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a. Alternate Path Modifications

Changes in this category involve those diagrams which contain a box

that can be reached in two ways, one of which consumes input while the other

does not. Figure 3.1 depicts the difference between a syntax and transition

diagram in representing alternatives.

A Bi1

11

(a) (b)

Figure 3.1 Alternate Path Modifications

Notice that at box B in the syntax diagram (3.1a), it is not possible to determine

whether input has been consumed. Since parsing requires each box to have

unique true and false pointers, a modification is required. By adding a box BI in

forming the transition diagram (3.1b), an error exit is taken from BI if input was

consumed, and a return false exit is taken from B if input was not consumed. -
"

b. Looping Modifications

Changes in this category apply to those diagrams which permit

multiple occurences, such as the Var and Type declaration parts in Pascal. This

modification concerns those boxes which require at least one true exit, followed

by zero or more true exits, prior to returning from the diagram. Figure 3.2

illustrates the modification required.

35

S. - ,



I . .

BE

(a)

--f A B B

(b)

Figure 3.2 Looping Modifications

The syntax diagram (3.2a) provides no indication that at least one true exit was

taken at box B. Conversely, the transition diagram (3.2b) shows that the first

box B is required and that additional "loops" are optional. Thus, by adding

another box, an error exit is taken if B is not found and a return true exit is

taken if one or more occurences of box B are found.

c. Syntactic Modifications

The Analyzer, unlike a working compiler, does not retain the

declared type of identifiers, and can't tell what symbols should follow an identif-

ier. Since LL(1) requires that the next lexeme allow an unambiguous choice

between alternatives, identifier boxes must he left-factored as shown below in

Figure 3.3.
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A ident

becomes B"
BB

Figure 3.3 Factoring Modifications

d. Empty Statement Modifications

The existence of an empty statement in Pascal requires a special .

adjustment to the transition diagrams. If the empty statement is included as an

alternate form of Statement, this violates the convention that a true exit implies

input has been consumed. Normally an empty statement would be recognized by

default if none of the Statement start symbols were found. But by specifying a

return false from Statement and recognizing the presence of an empty statement

in the calling diagram, the correct parsing structure is maintained and confusing

error messages, which report successful recognition of an empty statement at a

point where a statement start symbol is expected, are avoided.

3. Parsing Actions

Parsing begins when an activation record for the first diagram (Program)

is pushed onto the stack. The location pointer is initialized to the first box in the.'

diagram, and the lexical analyzer deposits the first lexeme into the lexeme buffer.

Parsing from this point is simply a traversal through the transition diagrams,

which advances based upon the following:

(1) If the location pointer points to a header box, then set the location

pointer to the next box (first syntactic entity) in the diagram.
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(2) If the location pointer points to a nonterminal box, then push an

activation record onto the stack and set the location pointer to the

header box of the appropriate diagram.

(3) If the location pointer points to a terminal box, then compare the

contents of the lexeme buffer with the lexeme associated to the box. -. -

If they are identical, set the location pointer to the box specified by

the true pointer and consume the lexeme; otherwise, set the location

pointer to the box specified by the false pointer.

Parsing continues in this manner except when the location pointer is one of the

following:

Return true -- the current diagram has been successfully completed. Pop the

stack and set the location pointer to the true pointer contained in the return
address box.

Return false -- no true exits were taken in the current diagram. Pop the
stack and set the location pointer to the false pointer contained in the return
address box.

Exit error -- the buffer contains a lexeme which does not allow parsing to
continue. Push a recovery record onto the stack and enter error recovery
mode (discussed in the next section of this chapter).

Syntactic analysis concludes when the next lexeme is the end-of-file lexeme and ,.

the Program activation record is popped off the stack.

C. ERROR RECOVERY

Error recovery mode is entered for the purpose of resynchronizing the parse.

As discussed in Chapter Two, there are two conditions which dictate a transition

from normal execution: 1) recognition of a new error, and 2) the presence of a

previous error recovery activation record at the top of the parsing stack,

signifying completion of a restart phase. This section discusses the

implementation of error recovery operations. Specific subroutine comments are

included with the program listings in Appendix C. - ''
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1. Recovery Data Structures

Since the parsing stack is a dynamic structure, it follows that error

recovery procedures should also function dynamically in restoring the state of the

parse. The error recovery mode creates or accesses four dynamic list structures.

One list is an error recovery tree, which is constructed and traversed in

generating the set of recovery symbols. Two are linked lists which hold the

resynchronization and restart symbols, and one is a list containing error records

as nodes, where each node represents a separate error occurence and includes the

various pointers which provide access to the message data. For clarification

concerning the recovery sets described below, the term recovery symbol list refers

to the set of resynchronization symbols which are dynamically generated

following error detection. A recovery set consists of both resynchronization and

restart symbols.
': a. Recovery Tree

The recovery tree is a series of nodes which are created and traversed

for the purpose of dynamically creating a set of potential recovery positions

within the transition diagrams. Each node in the tree represents a diagram box

which is reachable from the box that yielded the last true exit prior to error

detection. A "depth first" search of the tree is performed to generate the

recovery symbols.

b. Recovery Symbol List

The recovery symbols collected during the tree traversal are

contained in the recovery symbol list which "extends" from the recovery record

* on the stack. The following information is stored in each node:

(1) symbol name

(2) lexeme code

. (3) a pointer to the location of the symbol's box in the transition

diagrams.

(4) a pointer to the activation record on the stack that represents the

transition diagram which contains the box for this symbol.
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When the buffer lexeme matches one of the lexemes in the list, parsing resumes

at the box which is pointed to by the true exit pointer of the chosen symbol's box

(#3 above). Since more than one recovery activation may be present on the 4

stack simultaneously, a union of existing sets is formed by joining the list

pointers, with the most recent list first. Figure 3.4 illustrates the parsing stack

and a recovery symbol list which represents a union of symbols from pending
4

recovery activations.

Top ---- >

--- a t 0 ol ddotRECOVERY downto

For Statement,//

Statement .

RECOVERY e.d

Compound Statement

Block

Program _______-,____._

Figure 3.4 Recovery Symbol List

c. Restart Symbol List

This list is created during initialization of the transition diagrams. If

a box has been designated as a restart lexeme, then a node containing this sym-

bol is added to the list, along with the address of the diagram whose activation

record belongs on the stack if the symbol is selected as a recovery point.

d. Error Record List

Once a recovery activation record has been pushed onto the stack, .

and prior to beginning the recovery process, a record of error information is

created. This record contains the history list pointer, legal list pointer, source
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position pointer, and affected diagram name. This record then becomes a node in

a linked list which contains all of the data for each error on the current source

line.

2. Recovery Mode Operation

Three primary actions are required of the recovery module: generate the

recovery set, search for a recovery symbol, and restore a normal parsing

environment. If the recovery mode has been resumed, then only the latter two "

apply, since the previously generated set still remains as part of the old recovery

activation record. The following briefly describes the implementation of these

operations.

a. Generating the Recovery Set

Recovery set generation is implemented by means of a recursive

controlling routine which builds and traverses the recovery tree in preorder

(root-left-right). The recursion halts when either all diagram boxes (reachable

from the last true exit) have been examined. This process is performed for each

level of stack, i.e., the routine "walks down" the parsing stack, adding any

symbol to the recovery list which has not yet been generated for the current I..

activation.

b. Searching For a Recovery Symbol

Following recovery set generation, input is consumed until a recovery

symbol is the next lexeme. Duplicate symbols may be present in the recovery set

only if the set represents the union of two or more recovery lists (where the most

recent, or nested, symbol would be selected). An error display handling routine is

called to save the source positions of the "garbled" text (i.e., input which has

been discarded during search) for later use in underlining the affected segments.

c. Restoring the Parse

If the recovery symbol is a restart symbol, then a new activation

record is pushed onto the stack and parsing resumes within that diagram at the

box pointed to by the true exit pointer of the restart symbol's box. Otherwise,

activation records are popped off the stack (if required) until the correct record

for the selected symbol is on top.
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3. Lexical Errors

While the primary purpose of the Analyzer is to process syntactic errors.

a brief mention is made here concerning lexical errors. Many lexical errors are

corrected in the lexical analysis stage. If the scanner gcneratcs an invalid real

constant error, for example, a lexeme adjustment routine is called to record the

error (for later display with any syntactic messages) and modify the lexeme so

that a valid real constant is returned. If an illegal character is detected, however.

the error lexeme is passed onto the parser to permit the initiatinn of appropriate

recovery action.

D. ERROR MESSAGE PROCESSING

As discussed in Chapter Two, the information needed to generate error

messages is easily obtained by collecting the data during diagram traversal. The

history list is updated each time a box true exit or a diagram return true exit is

taken, adding a new entry for the lexeme or nonterminal box, respectively. The -.

legal list is updated each time the buffer lexeme fails to match the lexeme

associated to the box, i.e., upon every false exit from a lexeme box. Thus, the

major portion of the message production process concerns those operations which

are required for display formatting. As with the recovery routines, message

display processing is performed almost exclusively using linked structures.

1. Error List Composition

There are three components or sources of error information: lexical stage

errors, syntactic errors, and discarded text. Each error component is implemented

as a linked list. In the syntactic error list, the nodes represent error records, one

record for each syntactic error on the line, and contain the various error pointers

such as the history list pointer. The lexical list contains the error position and a

buffer with the text of the message. The discarded text list is a sequence of

nodes, where each node contains start and stop source positions that bracket the

corresponding text positions which require underlining.

42

":7
ItI

'%..*''



2. Error Collection

The error handler is called by the end-of-line routine to output any

messages for the line just completed. The lexical and syntactic error lists are

merged to create an error sequence list for the line. Once the sequencing list has

been created, it acts as a master controller, simultaneously traversing the 2.:

syntactic and lexical lists and calling the output routine with the appropriate

error record for display.

3. Line Formatting

All source text which is discarded by the error recovery process is

underlined to provide the user with a clear indication of the Analyzer's recovery

actions. Using the position information provided via the discarded text pointer,

underlining is performed by creating a line buffer (array of characters) and

assigning an underline character to each buffer position which coincides with a

start-stop range in the discarded text list. Vertical dotted line formatting is also

performed using the position information contained in the error sequence list.

After each message has been output, the sequence list pointer is advanced one

node, indicating that vertical line display also begins with the next position, thus

creating the proper overlap required when multiple messages are displayed for a

single line of text. Appendix A contains sample output listings which include

examples of the various display effects when multiple error diagnostics are

generated for a single line.
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IV. TESTING AND DISCUSSION

The purpose of this chapter is to demonstrate the capabilities of the Analyzer -

through testing examples and to discuss recovery actions on representative errors.

Since determining the effectiveness of an error recovery scheme is mainly

- subjective, we feel it best for the reader to draw his own conclusions.

A. TESTING

The Syntactic Analyzer was tested using several Pascal programs. Many of

these include representative erroneous text segments from the Ripley data base

[Ref. 7], referred to in chapter one, while others were written by first quarter

graduate students in an introductory programming course. Hand-constructed

programs were designed to test Analyzer performance on code segments which
contained numerous structural errors, and some Fortran programs were also run

to further stress the recovery mechanism.

It is difficult to statistically measure error recovery effectiveness. Many .P

researchers in the literature have used the Ripley program segments to test their

"- recovery schemes and to serve as a basis for empirical analysis. While the

-. segments were also used here, we feel that a more realistic assessment of Analyzer

performance would be obtained by combining them into larger programs which

contained the errors within several Pascal procedures. The programs used here

each contain approximately 30 representative errors. Rather than attempt to

categorize the recovery diagnosis in terms of excellent, good, etc., programs were

* examined only with respect to the ratio of error messages generated vs. minimum 7

lexeme corrections, where minimum lexeme corrections is defined as the minimum

number of lexemes required to transform the incorrect programs into

syntactically valid ones. The sampling contained approximately 165 single .

* lexeme errors which resulted in producing only 175 error messages. Although

6% of the messages were spurious, the induced messages were plausible and
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informative. For example, the illegal "'" in "if <Boolean expression> ; then..."

resulted in one message for the If Statement as well as one subsequent message at

then for the illegal beginning of a Compound statemnt. With an ideal ratio of

one-to-one, the results are certainly encouraging. The next section will examine

some of the output listings from these and other sample runs, and additional test

listings are included in Appendix A.

B. REPRESENTATIVE CASES

Figure 4.1 contains the example program discussed in chapter two involving

simultaneous recovery activations. Parsing initially halts on the identifier

"than". The contents of the history list at the time of error detection are shown

after "Recognized", followed next by those lexemes which would have been

syntactically legal. Notice that the legal list contains many possibilities, as the

identifier "y" could be part of a variable, the beginning of a larger arithmetic

expression, or the beginning of a function call. Since "than" is not a

resynchronization symbol, the text is underlined to show the user that it was
discarded during recovery. The next lexeme, while, suspends the recovery

process and parsing resumes with the pending If Statement recovery record on

the stack. The next error is correctly caught at "doo" and, once again, no

recovery occurs for the current activation since begin causes yet another restart

by suspending recovery mode. By the time if is recognized in line 8, three

* recovery records have accumulated on the stack. At the end in line 10, parsing

of the If Statement is completed and recovery mode is reentered to attempt

*. resolution of the Compound Statement activation. Recovery occurs immediately

on end, followed by a recursive recovery call at else. Although the While

Statement recovery record is the top record at this stage, else is a member of the

recovery set generated for the If Statement error. So, the recovery resolves the

outermost error, and normal execution continues for the remainder of the

program. Notice how little input was processed in the recovery mode. Although

this example is relatively simple, it should be clear that the Analyzer frequently

suspends and resumes the recovery process. With both the restart symbols
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and resynchronization symbols, less time is spent looking for a recovery point,

more time is spent looking for additional errors, and fewer runs are required to

obtain a syntactically correct program.

Figure 4.2 contains some sample program segments which demonstrate the

Analyzer's recovery actions on common errors. Notice the error on line 8, where

it appears that the user intended ":=" instead of "=". In this case, the error has

caused the Analyzer to pop the activation for If Statement (as "fact" could be a

legal procedure call), thereby eliminating else from becoming a resynchronization

symbol. Nevertheless, the user is given an accurate description of what was

recognized, since the last "<statement>" represents the If Statement and the

discarded else is underlined. Detection of begin on line 9 initiates a return to the

parsing mode, pushing a new Compound Statement activation record on top of

the existing Compound Statement recovery record. When end is recognized,

. parsing of Compound Statement is complete and the "exposed" recovery

activation record causes recursive entry into recovery mode, where the parse is

immediately resynchronized on ";". This figure also shows examples of errors

which were caused by misspelling of reserved words. Recovery after the identifier

"progeam" occurs on "(" however, the recovery from "constant" (where const

was expected) occurs on the ":" in line 5. This symbol was generated because of

an existing Procedure/Function Declaration activation record on the stack, and it

represents the symbol whose diagram box is part of a function heading sequence.

Despite recovering on a symbol which did not belong to the Const Declaration

diagram, the parse is back in step without any pending recovery activations.

The test segments contained in Figure 4.3 demonstrate recovery actions on

an error of commission, omission, and substitution, as well as the integration of

lexical errors in the error inessage output. Notice on line 5 that the illegal

character messages from the lexical stage appear together with the syntactic error

"bad write parameter list". The comment error at the end of the line, caused by

the omission of a preceding "(", accurately informs the user that a "bad

compound statement" was found. Each syntactically legal statement start symbol ..

is provided in the message narrative, along with the two legal delimeters ";"
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and end. The second error for Write Parameter List in line 5 contains the term

"junk". This corresponds to the previously discarded text and was inserted into

the history list in order to accurately reflect the cumulative status of the parse

for this construct. In line 13, the Analyzer detects an error of commission where

an end with no matching begin is found. The end is discarded and the message

indicates that a complete procedure block has been recognized where either the

beginning of a Compound Statement or another Procedure/Function Declaration

was expected. Finally, the error on line 16 shows a substitution error, where the

user is informed of the only symbol which would have been syntactically legal

following a preceding <constant> in Ordinal Type.

Not all recoveries were performed as easily as those discussed above. Figure

4.4 contains two examples which show errors that generated more than one

message. The sequence in line 2 results in three recoveries within the Formal

Parameter List activation. Parsing terminates at "," where ";" was expected. and

recovery occurs on the same lexeme. The ensuing error at var is due to the

previous recovery which restored the parse in the middle of an "identifier list".

and the second erroneous "," also leads to recovery on the same lexeme. All four ..-

recoveries on this line are performed correctly in terms of resuming at the proper

transition diagram box, but only three incorrect -,xemes are present. Although

an extra message was generated, no text was discarded and the messages provide

a clear indication of exactly what was expected and what action was taken. In

line 6, the error is correctly diagnosed, but recovery occurs on the ";" which

represents the box that terminates a procedure or function heading. The

identifier "boolean" is then regarded as either the lexeme forward or a Block

nonterminal, where the parse resynchronizes at the ";" corresponding to the end

of a Procedure/Function Declaration. Thus, the subsequent message states that

a "Bad block" has been found, and the Analyzer returns to normal execution at

begin. Nevertheless, as in the Formal Parameter List example above, the user is

provided with a clear display of recovery actions.
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C. DISCUSSION

Based upon testing performed thus far, it appears that the use of restart

symbols to control recursive calls to an error recovery routine is practical.

reliable, and effective. Rather than pursue a recovery mode solution for each

detected error, it seems advantageous to suspend the recovery process upon

recognizing a trustworthy symbol, traverse the diagram which begins with this

symbol, and then return to resume the recovery. Thus, in a program which

contains several errors, parsing is actually accomplished incrementally, moving

from one segment which begins with a restart symbol to another. Each time the

recovery process is suspended, the parser is able to detect any errors which may

be present in the new segment. ultimately analyzing most of the text and

possibly detecting all of the errors. Although several pending recovery records

may remain "unresolved" on the stack, the end result is that synchronization is

maintained and propagating error side effects, which cause confusing and

unnecessary messages, are eliminated.

One reason for the success of this method is that the restart symbols appear

both frequently and conveniently separated in a typical program. In Pascal, all

of the declaration start symbols, with the exception of var, are members of the

restart set. Recall that var may appear in either a declaration part or a formal

parameter list and, therefore, provides an ambiguous resumption point. So, there

exists a kind of "protection" against losing step no matter how serious the error

or combination of errors may be (assuming that the resynchronization set hasn't

already provided a symbol upon which to resume). Similarly in the compound

statement portion of a program, where almost all of the statement start symbols

are members of the restart set, protection is provided against a prolonged search

for a recovery point. Thus, the restart symbols are not only trustworthy from the

standpoint of providing an unambiguous position within the transition diagrams,

but they always seem to be in "just the right places". Combining these symbols

with resynchronization recovery points from the active contexts, the end result is

that more errors have been detected.
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While the restart symbols are the key to the recovery scheme, the

resynchronization symbols provide not only additional recovery points, but also

an element of safety as well. Since only positions reachable from the last true

exit in the active diagrams are chosen, some potentially good recovery points may

be excluded. Line 11 in Figure 4.4 shows an invalid declaration where the error is

correctly identified as "missing =". Although array would appear to be a good

recovery point in this context, recovery does not occur until the delimiting

semicolon is recognized, as shown by the underlined text. This is because the

error occured in the Type Declaration context and an activation for Type

Denoter has yet to be pushed onto the stack. Thus, symbols such as packed,

array, etc. are not members of the recovery set since the resynchronization

symbols are derived only from the stack configuration at time of error detection.

During the initial phases of implementing this recovery method, some

experimentation was performed in attempting to effect a recovery in fewer

lexemes by building on the stack after pushing a recovery record. In other words,

the nonterminals from the active diagram that are reachable from the last true

exit would be expanded to provide additional recovery possibilities. But the

larger size of the recovery set and the risk of recovering in the wrong activation

ultimately resulted in inducing extra errors.

The most significant characteristic of this recovery scheme is the quality of

the error messages and its value as an instructional software tool. If the primary

ogoal of a compiler is to effectively communicate with the user, then this approach
seems to have lived up to standards. Cascading error messages have been

eliminated and each message provides only the facts about what "was" and -

"what could have been". The novice programmer is undoubtedly a primary

beneficiary. Between the history list, the syntactically legal list, source position

pointer, and the underlining of discarded text, the user is certainly provided with

enough information to fully understand the error and the actions performed by .

the Analyzer during the recovery. In the erroneous Pascal sequence, "if.. .then

begin...end ; else...", many compilers would issue a message similar to " ; can

never come before else". While this accurately describes the problem, a
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diagnostic which explains that else cannot occur after the sequence

"<statement> ;" in a compound statement is much clearer. It specifically states.

in the context of the language syntax, that a statement (If Statement) has been

recognized and that a new statement cannot begin with else. The combination

of the three diagnostic aids (error message, source pointer, underlining) leaves

little room for any misunderstanding of reported errors. If the complete

diagnostic package is undesirable for a more advanced user, incorporation of a

"help" selection feature could provide the means for tailoring the output to the

requested level of assistance.

D. SUGGESTIONS FOR FUTURE EFFORTS

This thesis is a step toward determining the effectiveness and usefulness of

this method of error recovery. Testing results appear to confirm its feasibility:

however, further testing needs to be performed and should include

experimentation with various recovery set combinations to ascertain an improved

configuration. While efforts thus far have been directed at the syntactic level, a

longer term objective should be to incorporate the Syntactic Analyzer into a full

compiler implementation, where a first pass would generate syntactic error

messages and a second pass would add the semantic errors. Thus, the error

messages could be integrated in the output as was done here with the lexical and

syntactic messages. Although this implementation was performed for Pascal, -

future efforts might explore the feasibility of this approach for other higher level

languages. The syntax diagram traversal concept seems easy to extend, and

many languages contain a number of symbols which could be designated as

"fiducial" for recovery purposes. Certainly, programmers of all languages would

benefit from reliable error recovery and informative diagnostics.
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APPENDIX A: SAMPLE OUTPUT LISTINGS
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APPENDIX B: TRANSITION DIAGRAMS

The following are the transition diagrams which are traversed by the parser

during syntactic analysis. As discussed in Chapters Two and Three, these

diagrams are derived from the syntax charts, but have been modified to provide

unique true and false exits for each syntactic unit. The table below illustrates the

notation used in the transition diagrams. Exit arrow convention concerns the

initial direction of the line from a box. Notice that while true exits are normally

shown to the right, left is also used here due to space and readability

considerations.

Diagram Symbology

Symbol Meaning Symbol Meaning

-> true exit Note

false exit header box

return true nonterminal box

return false lexeme boxes

Note:

This symbol appears next to those boxes which have been added as a result

of the modifications discussed in Chapter Three.
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APPENDIX C: PROGRAM LISTINGS

This program was coded using separate compilation on the UNIX

operating system. Comments are provided for each procedure and function in the

program to assist. in understanding the purpose and design of each module. The

program is divided into eight logical sections which appear in the following order:

(1) Main Routine and Declarations

(2) Lexical Routines

(3) Syntactic Routines

(4) Recovery Routines

(5) Error Processing Routines

(6) Output Routines

(7) Initializations

(8) Diagram Input File

I K
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MAIN ROUTINE

program syntacticanalyzer(input,output);

#include "globalh"
{This is the main routine for the Syntactic Analyzer. The name of the
file to be analyzed is read from the command line, along with any options
which have been selected. Procedure parse is then called to perform
the syntactic analysis.}

begin
argv(1,filename);-
reset (input,filename);
argv(2,option);
printrecovset:= false;
printhistory:= false;
printbox:= false;
printstack:= false;
printlisting:= false;
printposit:= false;

while i <= totaloptions do
begin

if option ji] = Yr then
printrecovset:= true

else if option(i] = 'h' then
printhistory:= true

else if optionji] = 'b' then
printbox:= true

else if option Ii] = 's' then
printstack:= true

else if optionli] = '1 then
printlisting:= true L

else if option[i] = 'p' then
printposit:= true . ~

else;
i:= i + 1

end;
parse

end. l
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GLOBAL DECLARATIONS

const
totaloptions 

hK fileidlength -

type
string packed array[ 1. .fileidlength) of char;
switcles (prstack,prhalt,prresume,preof,preop);

var
option string;
f l1ename string;
printrecovset boo ean;
printbox boolean;
printhistory boolean;
printstack boolean;
printlisting boolean;
printposit boolean;

* procedure parse; external;
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COMMON DEFINITIONS1]

* ~~~ CONSTANTS AND TYPE DEFINITIONS .*-

coflst 24
reswordtotal = 37; -

indextotal 24;
statetotal =34;

maxline =80;

maxidlen 8;
lexrnsglength =50;

maxname =25;

namelength =31;

totallexemes 70;

intnil = 0;
exittrue =-1

exitfalse =-2;

exiterror =-3;

exitrecovery -4;
maxboxes =350;

lineprintwidth =132;

lineoffset = 10;
maxhistoryitems = 6;

displayedge = g0;
justifyl = 103;
justify2 = 114;
justify3 93;

spacel = 3;
space2 6;

type
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{ *****************LEXICAL DEFINITIONS

syntaxunit ={lexemes}

(doo,iff,inn,off,orr,too,andd,divv,endd,forr,modd,nill,
nott,sett,varr,casee,elsee,filee,gotoo,thenn,typee,withh,
arrayy,beginn,constt,abel,untill,whilee,writee,downtoo,
packedd,recordd,repeatt,forwardd,programm,writellf,
ffunction,pprocedure,identifier,realconst ,intconst,
stringconst,addop,inuloprelop,equals ,colon,becomes ,comma,
semicolon,period,range,pointer,lftparen,rtparen,
lftbracket,rtbracket,stop,endoffile,endmarker,illegal, t
badcomnnent,badexpon,baddecpt ,badsign ,badstring,
zerostring,badexpart,baddecinial,nodigits);

charset = set of char;
word = packed array[ i..maxidlen] of char;
lexnaxne = packed array [1..maxnamel of char;
reswords = packed array [O. .reswordtotall of word;
Iexvalue = ..totallexemes;
lexconvert =packed record

id: lexname;
su: syntaxunit;

end;
lexernelist = packed array[ i..namelength] of lexconvert;
chindex = packed record

ch :char;
val: integer;

end;
idlengths =packed array [O. .maxidlenj of integer;
tableindex =packed array [O..indextotal] of chindex;
bufftype =packed array[ l..xaxiinel of char;
lextable =packed array (0..statetotal,0..inpsymtotall of integer;
lexinessage = packed array[1 l..Iexznsglength] of char;
lexparalns -packed record

id reswords;
idlen idlengths;
tab :lextable; ~-
chrs :tableindex;
listi lexemelist;
list2 lexemelist;

85

a~~~~~ ~~~~ -* *k%~! ".* . . ~ - .



eol boolean;
list :boolean;
limit boolean;
badtext :boolean;
continue: boolean;
comments: boolean;

V chpos :integer;
chstart integer;
lastpos :integer;
textend : integer;
letter : charset;
number : charset;
expon :charset,
sign :charset;
linebuf: bufftype;
auxbuf :buiftype;
count :integer;
linenum :integer;
oldline: boolean;
lasttok :lexvalue;
lastch :char;
ch :char;

end;

~~ SYNTACTIC DEFINITIONS

boxptr =-4..maxboxes;

boxtype =(header,lexeme,nonteriinal);

boxname =packed array[ L.xaxnamej of char;
box record

typ :boxtype;
name :boxname;
lexcode : integer;
nextptr : boxptr;
trueptr : boxptr;
falseptr: boxptr; .

end; F

syntaxchart =packed array[i l.maxboxes] of box;
headptr =headlist;

headlist =packed record
name :boxname;



boxnum: boxptr;
next : headptr;

end;
legalptr =legallist;

legallist =packed record
boxnum: boxptr;
next : legalptr;

end;
historyptr =historyelement; A
historyelement= record

name: boxname;
typ : boxtype;
next: historyptr;

end; 4
stacktype =(activation,recovery);

stackptr ^ stackelement;
recovptr ^ recovelement;
stackelement record

kind :stacktype;
name :boxname;
diagramhead, : boxptr;
next :stackptr;
returnaddr : boxptr;
Iasttrue :boxptr;
histptr :historyptr;
recovset :recovptr;
currentrec :stackptr;

end;
namelist =packed array [O..totallexemes] of boxname;
restartptr = ^restartlist;
syntaxdata =packed record

name : namelist;
rstart: restartptr;
head :headptr;
legal legalptr;
total :integer;
last :boxptr;
eop :boxptr;

end;
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{ ~ RECOVERY DEFINITIONS

recovelement record
name boxname;
code :integer;
diagrampos: boxptr;
parentrec :stackptr;
next recovptr;

end;
restartlist packed record

token :lexvalue;
boxnurn: boxptr;
next : restartptr;

end;
recoverposits =packed array [O..maxboxes] of boolean;
usedsyrnbols =packed array [O. .totallexemesj of boolean;
treeptr recovnode;
recovnode =packed record

code : integer;
true : treeptr;
false: treeptr;

end;
recovset =recovsymbols;

recovsymbols =packed record
syzub: integer;
next: recovset;

end;
recovdata packed record...

points : recoverposits;
symbols: recovset;
used : usedsyrnbols;

end;2

~~~~ ~~ERROR DEFINITIONS ************

garbledptr =garbledtext;
garbledtext -packed record

junkstart: integer;
*junkstop : integer;

symb :lexvalue;
next :garbledptr;
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end;
lexerrdata =packed record

errpos :integer;
typ :integer;
message: lexmessage;

end;
lexerrorptr =lexerrlist;

Iexerrlist =packed record
listing: lexerrdata;
next :lexerrorptr;

end;
errdata =packed record

errstart : integer;
diagname : boxname;
starthist: historyptr;
endhist :historyptr;
expected :legalptr;

end;
errorptr = errlist;
errlist =packed record

listing: errdata;
next : errorptr;

end;
errormark = sourceposit;
sourceposit packed record

pos: integer;
typ :char;
next: errormark;

end;
errordata packed record

errptr :errorptr;
lexerrptr :lexerrorptr;
garbiedlist: gurbledptr;

end;



{ ~ EXTERNAL DECLARATIONS

procedure initialize (var diagrams: syntaxchart; var lexx: lexparams;
var syntax: syntaxdata; var error: errordata;
var recov: recovdata); external;

function gettoken (var lexx: lexparams; var error: errordata;
var diagrams: syntaxchart):lexvalue; external;.

*function getchr (var lexx: lexparams; var error: errordata;
var diagrams: syntaxchart): char; external;

*procedure lexicalerror (var lexx: lexparams; num: lexvalue;
var error: errordata); external;

procedure push (typ: stacktype; var stack: stackptr;
name: boxname; pos,head: boxptr); external;

function POP (var stack: stackptr): boxptr; external;

procedure update (var stack: stackptr; loc: boxptr;
item: boxname; typ: boxtype); external;

procedure insertlegal (pos: boxptr; var p: legalptr); external;

*function findlegal (pos: boxptr; p: legalptr;
var diagrams: syntaxchart): boolean; external;

*function getheadptr (head: headptr; name: boxname): boxptr; external;

procedure recover (var stack: stackptr; var diagrams:syntaxchart;
var resumeptr: boxptr; var token: lexvalue;
var lexx: lexparams; var syntax: syntaxdata;
var error: errordata; var recov: recovdata); external;

*procedure errormessage (var lexx: lexparains; var error: errordata;
var diagrams syntaxchart); external;

procedure recorderror (var error: errordata; var lex: lexparam;
var stack: stackptr; var syntax: syntaxdata); external;

procedure updatesource (var error: errordata; badstuff: boolean;
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oldpos: integer; token: lexvalue;

var lex: lexparams); external;

procedure printmark (errmarker: errormark); external;

*function findtextend (var lexx: lexparams): integer; external;

*procedure outputhistory (p: historyptr; q: errorptr; r: errormark;
lastmark: integer); external;

procedure outputlegal (p: legalptr; q: errorptr; r: errormark;
lastmark: integer; var diagrams: syntaxchart); external;

procedure printset (p: recovptr); external;

*procedure printhist (p: historyptr); external;

procedure printsyntax (var diagrams: syntaxchart;

var syntax: syntaxdata); external;

procedure print (switch: switches; p: stackptr;
var lexx: lexparams; var syntax: syntaxdata;
var token: lexvalue); external;

function length (name: boxname): integer; external;



#include "global.h"
#include "common.h"

LEXICAL ANALYSIS

TEXT PROCESSING ROUTINES

procedure endline(var lexx: lexparams; var error: errordata;
var diagrams: syntaxchart);

{ This module is called by getchr upon the first character read after
processing has concluded on the current line. If the "printlisting"
command line switch has been set, then the buffered line of text is
written and any accumulated text in the auxiliary buffer is moved into
the line buffer. The auxiliary buffer holds the text which is read from
the input file after eoln is true, providing temporary storage until all , -
processing activities on the previous line (such as error messages) have
been completed, i.e. it may not be until several characters into the
succeeding line that an error is recognized on the current line. The delay
in handling end of line is accomplished via the lexical boolean variable
"list". The variable "oldline" used here is for the purpose of overriding
the incremental line numbering in the event endline has been called due to
reaching the 80 column boundary (maxline). The variable "limit" indicates
that maxline has been reached, but eol is not true. The final action in
this module is to call the error handler if any errors have been recorded. }

const
numberfield - 8;

var
i: integer;

begin
with lexx do

begin
if not oldline then

begin
linenum:= linenum + 1;
if printlisting then

write(linenum: numberfield,' ')
else

end
else

write(' ': lineoffset);
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..... .....

textend:= findtextend(lexx);
for i:= 1 to lastpos-I do

begin
if printlisting then

write (linebufli])
else;

linebufqi].-''
end;

begin
if printlisting then

writeln(linebuflmaxline])
else;
oldline:= true

end
else begin

if printlisting then
writein (linebufllastposl)

else;
oldline:= false

end;
linebuf[maxlinej:=';
for i: = 1 to maxline do

begin
linebufli]: auxbufjil;
auxbuflil:-

end; I
list:= false;

end;
with error do

if (garb ledlist < > nil) or (errptr < > nil)
or (Iexerrptr <> nil) then

errorrnessage(lexx,error,diagrams)
else L

end;

.v
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to the calling lexical analyzer subroutine. If the character position
is at column 80 (maxline) or if eol is true, then the boolean "list" is
set to signal that next time around the "endline" processing routine
must be called. (Note: eol is set by the lexical analyzer when
eoln.(input) is true, but it is the next read operation, which will be the
actual end of line positiou, when eol is recognized in getchr). A blank
is the processing representation for both the eoln and eof characters.
Th,- cha.-acter position counter (chpos) is reset to zero at end of line,
and the lexica, boolean variables which keep track of discarded text
are set to enable the continuation of underlining, if currently enabled.}

const
tabadjust ,7;

tabch =9,

begin
with lexx do

begin
if list then

endline(lexx,error,diagrains);
lastch:= ch;
if (chpos = maxline) or (eol) then

begin
if not ((chpos maxline) and (not eol)) then

begin
read(ch);
limit:= false

end
else

imit:= true;
lastpos:= chpos;
chpos:= 0;
if comments or limit then

begin
chstart:= 1;
if badtext then

continue:= true;
end;

list:= true;
end

else;

%- .V
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ifntLfinu)te
if not eo(input) then

begin
read(ch);
chpos:= chpos + 1;
if ord(ch) = tabch then

chpos:= chpos + tabadjust;
if not list then C

if ord(ch) <> tabch then
linebuflchpos] := ch

else
else

if ord(ch) <> tabch then
auxbuflchpos]:= ch

else;
end

else
ch:=

else
ch:='

getchr:= ch
end;

end;

LEXICAL ANALYZER UTILITIES

procedure checkcaps(len: integer; var name: word);
{This routine converts all characters to lower case, permitting recognition
of reserved words which are capitalized or partially capitalized. Lower
case symbols are used exclusively throughout the program.}

const
lowcase = 97;
ascii = 32;

var
i: integer;

begin
for i:= 1 to len do

if ord(name[]) < lowcase then
name[i]:= chr (ord (name [i]) +ascii)

else
end;
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function searchword(len: integer; ident: word; var lexx: lexparams): lexvalue;
{This routine searches an array of reserved words, which are stored in
increasing order of length, beginning with the first word in the list
whose length is equal to the call parameter (thus onl-, length "len" words
are checked. If a word is found which matches "ident", then the array index
is returned as the lexeme; otherwise, the identifier lexerne is returned.}

var
found: boolean;

i: integer;
begin

with lexx do
begin

checkcaps (len,ident);
i:= idlen~len-li;
found:= false; -

while (not found) and (i < idlen[len]) do
if ident = idli] then

found:= true
else

i:= i+ti;
if found then

searchword:=
else .4

searchword: =ord (identifier)
end;..'4

end;
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function convert(c: char; var lexx: lexparams): integer;
This function is utilized by performscan to map input characters to
integers in order to provide the vertical index into the lexical table.
Columns include one for letters, one for numbers, one for illegal
characters, and others as required to index each Pascal character. }

const
lettcolumn 22;
numbcolumn = 21; -..
illegalch = 23;
indextotal 24;

var
i: integer;

begin
with lexx do

begin
i:= 0;
while (chrs[iI.ch <> c) and (i <= indextotal) do

i:=i + 1;
if i <= indextotal then

convert:=chrs[i].val
else if c in letter then

convert:= lettcolumn
else if c in number then

convert: =numbcolumn.
else

convert:=illegalch
end;

end;{ ********************************************************************} ?;:..

procedure checkcomment(c: char; var next: integer; var lexx: lexparams);
{ This procedure provides the capability to handle nested levels of comments

by incrementing and decrementing a counter if the next state marks the L
beginning or end of a comment construct. This feature comes in handy for
commenting out sections of code that contain embedded comments. Both the
primary and alternate comment symbols are checked here. }

const
comment = 15;

begin
with lexx do

begin
if c <> ''then
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if (c = '{') or ((c = and (lastch ='(')) then
count:= count + 1

else if (c in [')','}']) and (next = 0) then
begin

count:= count - 1;
if count < > 0 then

begin
next:= comment;
comments:= true

end
else

end
else

else;
end

end;{ ***** * ** ***',* ******* ************ ******* ** *********** ***** **** *** ***}*,

function adjustsymbol(var lexx: lexparams; symbol: lexvalue;
var error: errordata): lexvalue;

{ This function is the means by which lexical errors are suppressed. If an
error occurs in the lexical stage, it is recorded and entered into the
lexical error linked list. This routine then receives the erroneous
lexeme and returns a syntactically valid lexeme to permit parsing to
continue. Also performed in this module is the conversion of the
symbol "endmarker" into a representation for a "".This is necessary
because a period which ends a program (i.e. "end.") needs to be treated
differently than a period which is part of a field id. Thus if the
last lexeme was an "end", the assumption is that this symbol is a program
end symbol, and the adjustment is made to return a lexeme for
"endmarker" (the special period). }

begin
with lexx do

if symbol = ord(period) then
if lasttok = ord(endd) then

-- adjustsymbol:=ord(endmarker)
else

adjustsymbol: =ord (period)
else begin

lexicalerror(lexx,symbol,error);
if (symbol = ord(badexpon)) or (symbol = ord(baddecpt)) or

(symbol = ord(badsign)) or (symbol = ord(badexpart)) or
(symbol = ord(baddecimal)) or (symbol = ord(nodigits)) then
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adjustsymbol:= ord(realconst)
else if (symbol = ord(badstring)) or

(symbol = ord(zerostring)) then
adjustsymbol:= ord(stringconst) 4

else
adjustsymbol: = symbol;

end;
end;
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LEXICAL ANALYZER SUBROUTINES

function processword(var lexx: lexparams; var error: errordata;
var diagrams: syntaxchart): lexvalue;

{ "Processword" is one of the two primary routines which comprise the
scanner process. This function is called by the main lexical routine
(gettoken) whenever the current input character is a letter, which will
result in generating either a reserved word or identifier. Processword
consumes input until a character other than a letter or number is
encountered (recognizing only the first 8) and stores the word in a
buffer called "ident". The routine searchword is then called to search
the stored list of reserved words, based upon the passed length of ident
to permit more efficient searching. }

var
i integer;

ident : word;
begin
with lexx do
begin

for i:= 1 to maxname do
ident[i]:= '

i:= 0:
repeat

eol:= eoln(input);
if i< maxidlen then

begin
i:= i+1; .-._..

identli]:= ch
end;

ch:= getchr(lexx,error,diagrams);
until not ((ch in letter) or (ch in number)) or (eol) or (eof(input));
processword:= searchword(i,ident,lexx)

end;
end;

1 ********************************************************************"
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function performscan(var lexx: lexparams; var error: errordata;
var diagrams: syntaxchart): lexvalue;

{ This function is the second of the lexical analysis routines, generating
lexical tokens for all language symbols except word symbols, including
real, integer, and string constants. The heart of this routine is a two-
dimensional table, indexed by input character and state number, which
simulates the performance of an FSA on the standard Pascal character set.
In addition to generating tokens, the table also provides the means for
consuming source text which is contained within comment brackets. A repeat-
until construct is utilized to effect the state to state movement thru the
table. Transitions continue until a -1 sentinel (stopstate) is reached, at
which point the rightmost column (tokencol) contains the lexeme for the
symbol which has been recognized. Errors such as string quotes, missing
comment close, and real constant errors are also represented by integer
codes, but they are adjusted in the lexical stage and returned to the parser
as valid lexemes.

A note about end-of-line: the variable "eol" is set to the value of eoln
upon each entry into the table. This value, rather than eoln, is used for
end of line determination, since once the last character has been read, eoln
is false. }

const tokencol = 24;
ordrangech = 31;

lookaheadstate = 31;
realerrstate = 32;

commentl - 15;
comment2 = 16;
stopstate = -1; .

var
oldstate: integer;
newstate: integer;

begin
oldstate:= 0;
newstate:= 0;
with lexx do

begin
repeat

eol:= eoln(input);
oldstate:= newstate;
newstate:= tab [oldstate,convert (ch,lexx)];
if (newstate <> stopstate) or (oldstate >= realerrstate) then

if newstate - lookaheadstate then e
begin
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oldstate:= newstate;
newstate:= stopstate;
if ch T)'then -

p ch:=']
else

ch:= chr(ordrangech)
end

else begin
if (newstate comnienti) or (newstate comment2) or

(newstate =0) then
begin

if newstate <> 0 then
comments:= trueI else
comments:= false;

chstart:= chstart±1;
checkcomment (ch,newstate,Iexx)

end
else if (lastch in expon) and (ch in sign) then

if oldstate > =realerrstate then
newstate:= oldstate

else
else;

if newstate <> stopstate then
ch:= getchr(lexx,error,diagrarns)

else;
if comments then

eol:= falseU else
end

else
until (newstate stopstate) or eol or eof(input);
if (eol) and (newstate <> stopstate) then

* perforniscan:= tab [newstate,tokencolj
else

perforinscan:= tab [oldstate,tokencol];
end;

end;
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LEXICAL ANALYZER DRIVER

function gettoken;
This is the controlling routine for the lexical stage. The appropriate

subroutine (processword for a letter, performscan for all others) is called

for character-by-character scanning of the source text. The returned token

is then forwarded to the parser for use in the syntactic analysis. In the

event that no token is returned (blank line, etc), a recursive call to

gettoken is executed. Upon reaching end of file, an end-of-file token is
sent to the parser. }

var
symbol: lexvalue;

begin
with lexx do

begin
if not eof(input) then

begin
chstart:= chpos;
if ch in letter then

symbol:= processword(lexx,error,diagrams)
else

symbol:= performscan(lexx,error,diagrams);
if symbol = ord(stop) then

symbol:= gettoken (lexx,error,diagrams);
if (symbol > ord(endoffile)) or (symbol = ord(period)) then

symbol:= adjustsymbol(lexx,symbol,error)
else;
lasttok:= symbol; "

end
else begin

symbol:= ord(endoffile);
if lasttok = ord(endoffile) then

endline(lexxerror,diagrans);
lasttok:= symbol

end;
end;

gettoken:= symbol;
end; ..-..
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#include "global.h"
#include "common.h"

SYNTACTIC ANALYZER
********** ********* * * *** * ******** ** ************ '' •

STACK MANIPULATION ROUTINES

procedure push;
{ This routine is called by both the parsing and recovery modules to

push a diagram activation record onto the stack. Two types of records
may be pushed: activation or recovery. If the record is to be pushed
for normal execution (type activation), then all fields except the
"recovset" and "currentrec" are applicable. If the record is a recovery
type, then the "recovset" pointer is used to point to the set of
recovery symbols, and the "currentrec" field points to that level of
stack to which the symbol belongs. The constant "intnil" represents a
null initialization for integer pointers in order to distinguish them
from the dynamic pointer, "nil". }

var
p: stackptr;

begin
new(p);
p ^.kind:= typ;
p •name:= name;
p .returnaddr:= pos;
p .diagramhead:= head;
p .next:= stack;
p .lasttrue:= intnil;
p .histptr:= nil;
p .recovset:= nil;
p .currentrec:= stack;
stack:= p

end; {push}

function pop;
This routine returns an integer pointer which represents the return
address for the level of stack activation which has just been
completed, i.e. this pointer determines the position in the transition
diagrams from which the parse will resume. If the stack is empty,
this is conveyed to the parser by returning "intnil". }
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var
p: stackptr;

begin
p:= stack;

stack:= stack ^.next;
if stack <> nil then

pop:= p" .returnaddr

else
pop:= intnil;

dispose(p)
end:

procedure update; I
{ This routine is responsible for updating the "history list". The

history pointer (variable "histptr") points to a linked list
which contains one node for each box which has been successfully
traversed while the corresponding activation record has been on
the stack. This information is later used by the error handler L.
to build any error message which may be required in connection with
the current stack activation. The term "junk" is inserted into the
list if the history of the activation contains a segment where source
text was discarded by the recovery process. }

var
p.q: historyptr;

begin
if stack <> nil then

with stack^ do.L
begin

if loc < > intnil then
lasttrue:= loc;

if loc < > 1 then
begin [

new(p);
p .name:= item;
p .typ:= typ;
p next:= nil;
if histptr = nil then

histptr:= p
else begin

q:= histptr;
while q ^.next < > nil do

q:= q" .next;
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if (q -. namne ='Junk') and
(p ^.namne ='junk') then

q:= p
else

q ^.next:= p
end

end.
else;
if printhistory then

printhist (histptr)
else

end
else

end; {update}

{ ********,~**************************10*****



PARSER

procedure parse:
{ This is the parsing mechanism for the Syntactic Analyzer. Traversal

through the transition diagrams is contolled iteratively by a repeat-until
loop, and is terminated when the parsing stack has been emptied. On each
pass through the loop, one of three box types may be encountered: header,
nonterminal, or lexeme. If it is a header, the location pointer is set
to the first box in the diagram; if it is an nonterminal, then an
activation record is pushed onto the stack, and the location pointer
is set to the header box of the new diagram to be traversed; if it is
a lexeme, then the location pointer is set to either the box's true or
false exit pointer, depending upon whether the currently held lexeme
matches that associated to the box. If a true exit is taken, an update
routine is called to record the true exit in the history list. If the
exit is false and the box is a lexeme, then the set of all possible
legal symbols (held in the variable "syntax.legal") is updated in the
"legal" list which contains the symbols which "could have been". Calls
to various print utilities (if desired for debugging) are also performed
from this module in response to command line switch settings. }

var
lexx lexparams;
diagrams : syntaxchart;
p boxptr;
location : boxptr;
returnptr: boxptr;
token : lexvalue;
stack stackptr;
errors errordata;
syntax :syntaxdata;
recov recovdata:

begin
initialize(diagrams,lexx,syntax,errors,recov);

Initialize the parsing stack, push the "Program" transition
diagram activation record onto the stack, and call lexx for
the first lexeme. The initial call to update is required to
provide the recovery routine with a non-zero last true exit
in the case where recovery mode may be entered immediately,
i.e. missing "program". }
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stack:= nil;
P:=1

p ush(activation,stack ,diagrams[pI .naine,p~p);
update (stack ,p,diagranis~p].name.,diagrams [p] .typ);
token: = gettoken (lexx,errors ,diagrams);

{Begin syntactic analysis by following the location pointer

through the transition diagrams, which are accessed via the -

variable "diagrams".}

repeat
with diagramsfp] do

begin
if typ = header then

location: = nextptr
else if typ = nonterminal then

begin
push (activation,stack,name,p,nextptr);
location:= nextptr

end
else if token =lexcode then

begin
location:= trueptr;
update (stack.,p,name,typ);
token: = gettoken (lexx,errors ,diagrams);
syntax.legal:= nil;

end
else begin

location:= falseptr;
if not (findlegcd (p ,syntax.legal ,diagrams)) then

insertlegal(p ,syntax.legal)
else

end;

repeat
if (location =exittrue) or (location =exitfalse) then

repeat
returnptr:= pop (stack);
if returnptr < > exitrecovery then

if returnptr < > intnil then
if location = exittrue then

begin
location: =diagrams jreturnptr] .trueptr;
update (stack ,returnptr,diagramns [returnptr] .name,
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diagrams [returnptr] .typ);
end

else
location:=diagrams[returnptr].falseptr

else .. "
location:= intnil

else
location:= exitrecovery

until ((location <> exittrue) and (location <> exitfalse)) or
(location = exitrecovery)

else;

{ Check to see if either an error has been detected or if
parsing which was previously initiated by a restart symbol
has been completed, in which case control is shifted back to
the recovery mode by encountering an "exitrecovery". }

if (location exiterror) o; (location exitrecovery) then
begin

if printposit then
print (prhalt,stack,lexx,syntax,token);

if printstack then
print (prstack ,stack ,lexx,syntax,token);

recover(stack,diagrams,location ,token,lexx,syntax,errors,recov);
if location <> intnil then

if printstack then
print (prstack,stack,lexx,syntax,token)

else
else

end
else

until (location <> exittrue) and (location <> exitfalse);

{ Go to the next diagram box as determined by the location
pointer. Parsing terminates if the stack is empty. }

p:= location;
end;

until (stack =nil)
end;

*********1***********************************************************
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#include "global.h"
#include "common.h"

ERROR RECOVERY ROUTINES

ERROR RECOVERY UTILITIES
********************************************* * *** * **** * ** * ** * **** }'.

function makenode(boxnum: boxptr): treeptr;
{ This function creates a node of the recovery set tree, which is

formed by the "buildset" and "genrecovset" routines. This tree is
constructed dynamically and represents a traversal of the syntax
transition diagrams in collecting the set of recovery symbols. Each
node in the tree has two sons, one each for the true and false box
exit paths. }

var
p: treeptr;

begin
new(p)-
p .code:= boxnum;
p ^.true:= nil;
p .false:= nil;
makenode:= p

end;
.': ~ ~ {********************************************

procedure addsymbol(rp: stackptr; var diagrams: syntaxchart;
loc: boxptr);

{ This procedure adds a recovery symbol to the resynchronization
set, which is represented by a linked list and is pointed to by the
recovery set pointer of the current recovery activation. Symbol
information includes the name, parent diagram, position within that
diagram, and lexeme code. }

var p,q: recovptr;
begin

new(p);
p ".name:= diagrams[loc].name; p

p .code:= diagrams[loc].lexcode;
p .diagrampos:= lc;
p .parentrec:= rp ^.currentrec;
p .next:= nil;
if rp .recovset = nil then $fa
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rp .recovset:= p
else begin

q:= rp ^.recovset;
while q .next <> nil do

q:= q next;
q .next:= p,

end
end;

function searchlist(var rp: stackptr; token: lexvalue): boxptr;
{ This function searches the recovery symbol set, once for each lexeme

consumed during the recovery process. If the currently held lexeme
matches one of the recovery symbols, the recovery stack pointer is
set to the level of stack pointed to by the symbol's "parent record"
pointer, and the transition diagram position for this symbol (which is
where parsing will resume) is returned to the calling routine. If
no symbol is found, the "intnil" pointer is returned. }

vat ,r'"found: boolean;

p: recovptr;
begin

p:= rp ^.recovset;
found:= false;
while (p < > nil) and (not found) do

if p .code = token then
found:= trueelse !

p:= p- .next;

if p = nil then
searchlist:= intnil

else begin
rp:= p .parentrec;
searchlist:= p ^.diagrampos;

end;
end;
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function computepos(var diagrams: syntaxchart; newpos: boxptr;

token: lexvalue): boxptr;
{ This routine is used to compute the proper resumption point in the

transition diagrams if a restart symbol was found. If the symbol is
not the first box in the diagram, then the false exit path through the
diagram is followed until the symbol is found. }

var
pos: integer;

begin
if diagrams jnewpos+ 1].lexcode = token then

computepos:= newpos + 1
else begin

pos:= newpos+1;

repeat
pos:= diagrams [pos] .falseptr

until (diagrams[pos].lexcode = token);
computepos:= pos

end
end;{******** *************** *****************************************,

function getheadptr;
{ This routine returns the starting position of a diagram header box. This

function is called by the recovery module to determine a parsing resumption
point following a restart recovery which requires modifying the stack by
pushing a new activation record. Since a separate nonterminal for "Boolean
expression" is not used (i.e. there is no diagram), a check is made here to
return the expression header address in that situation. -

var
found: boolean;

p: headptr;
begin

p:= head;
found:= false;
while not found do

if p .name = name then
found:= true

else if (p .name = 'expression') and ' .:

(name = 'Boolean expression') then
found:= true

else
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p:= p .next;-
getheadptr:= p ^.boxnum

end;

function searchrestart (head: restartptr; code: lexvalue): boxptr;
{This routine is called by the recovery module to see if the currently held
lexeme is a member of the restart symbol set.}

var
found: boolean;

p: restartptr;
begin

p:= head; 4
found:= false;
while (not found) and (p < > nil) do

if p ^.token = code then
found:= true

else j
p:= p ^.next;

if found then
searchrestart:= p ^.boxnum

else
searchrestart:= intnil g

end;

function checkrecov (head: recovset; code: integer): boolean;
{This routine is called by the recovery module to see if the currently heldr
lexeme is a member of the resynchronization symbol set.}

var
found: boolean;

p: recovset;
begin 1

p:= head;
found:= false;
while (not found) and (p <> nil) do

if p ^.symb = code then
found:= true

else
p:= p .next;

checkrecov:= found;
end;
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ERROR RECOVERY SUBROUTINES

procedure buildset(p: treeptr; newbox: boxptr; branch: char; var diagrams:
syntaxchart; var stack,rp: stackptr; var recov: recovdata);

{ This routine is called by "genpreorder" to construct a "tree" data
structure which is used to generate the error recovery set. The tree
is built by making a node for each box in the transition diagram which
is positioned along either a true or false exit path from the point where
the last true exit was taken. If the box corresponds to a resynchronization
symbol, then the "addsymbol" routine is called to update the recovery set.
The boolean recovery point and used symbol arrays are then updated
accordingly. The tree construction is terminated when all boxes within
the diagram in the forward direction from the error position have been
examined. }

var
newsymbol: treeptr; ..-

begin
if (newbox > 0) and

((newbox <> diagrams[stack .lasttrue].falseptr) or (branch = 't')) then
not recov.points[newbox then

begin
if branch = 't' then

begin
p .true:= makenode(newbox);
newsymbol:= p .true A

end
else begin

p .false:= makenode(newbox);
newsymbol:= p .false

end;
if diagrams[newsymbol ".code].typ = lexeme then

if checkrecov(recov.symbols,diagrams[newsymbol ^.code].lexcode) then
if not (recov.used[diagrams[newsymbol ^.code].lexcode]) then

begin
addsymbol(rp,diagrams,newbox);
recov. used[diagrams[newsymbol ^.code] .lexcode] :- true

end
else

else
else;
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recov. points Inewsymbol ^.code]:= true
end

else
else

end;

procedure genpreorder(p: treeptr; var stack: stackptr; var rp: stackptr;
var diagrams:syntaxchart; var recov: recovdata);

{This routine controls the recovery symbol generation process by
creating and traversing a tree data structure in preorder. This
recursive procedure follows the standard " root- left-right " preorder
scheme where left, in this case, represents a true exit path and right
represents a false exit path.}

begin
if p < > nil then

with diagrams~p ^.code] do
begin

buildset (p,trueptr,'t',diagrams,stack,rp,recov);
genpreorder (p ^.true,stack ,rp,diagrams ,recov);
buildset (p,falseptr,'f',diagrams ,stack ,rp,recov);

* genpreorder(p ^.false,stack ,rp ,diagrans ,recov);
end

end;
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procedure genrecovset(var stack: stackptr; var diagrams: syntaxchart;
var recov: recovdata);

{ This is the driver for the recovery symbol generation process. The
purpose of this procedure is to "walk" down the parsing stack (whose
top at time of call is the most recent recovery activation record) and

generate any potential recovery symbols for each activation level. This
walk down the stack concludes when either the last activation level has
been reached or a recovery record from a previous recovery is encountered.
The final step of this routine joins this newly derived set with any
existing set which may already be present, i.e. the recovery set pointer
is adjusted, if necessary to "hook" onto the beginning of the existing
set, thus forming a "union" of recovery symbols. An important variable
used here (and in some of the other recovery subroutines above) is "rp",
or the recovery pointer, which provides the current point of reference
(i.e. what is the current level of stack) so as to act as a "movable"
pointer while the variable "stack" remains fixed at the top. .

var
top: stackptr;

i: integer;
p: treeptr;
q: recovptr;

rp: stackptr;
begin

initialize the boolean recovery point and used symbol arrays to indicate
that no diagram position has yet to be investigated as a possible recovery
point, and check the first stack level }

for i:= 0 to maxboxes do
recov.points[i]:= false;

for i:= 0 to totallexemes do
recov.used[i]:= false;

rp:= stack;
stack:= stack .next;

p:= makenode(stack .lasttrue);
genpreorder (p,stack,rp,diagrams,recov);

{ now that the first level has been checked, start walking down }

stack:= stack .next;
if stack <> nil then
repeat
top:= stack;
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if stack^ .kind < > recovery then
begin

rp '.currentrec:= stack;
if stack .lasttrue < > intnil then

begin
p:= makenode(stack ^.lasttrue);
genpreorder (p ,stack ,rp,diagraxns,recov);

end
else;

end
else begin

{join the sets, if required}

q:= rp -. recovset;
if q <> nil then

begin
while q ^.next < > nil do

q: = q ^.next;
q .next:= stack ^.recovset;

end
else

end;
stack:= stack ^nx

until (stack =nil) or (top^ .kind =recovery)

else;
stack:= rp;
if printrecovset then

printset(rp ^.recovset);
end;
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function performrecovery(var stack: stackptr; var diagrams: syntaxchart;
var token: lexvalue; var error: errordata;
var syntax: syntaxdata; var lex: lexparams): boxptr;

{ This routine returns the position in the transition diagrams where normal
parsing will resume. The following recovery decisions and actions are
either initiated or performed here: 1) determine whether or not the current
lexeme is a member of the "restart" set and if so, initiate action to
get the appropriate activation record onto the stack, and compute the
resumption point for parsing on this symbol, 2) initiate a search of the
recovery set for a match with the current lexeme and if found, return its
diagram postion, 3) interface with a display routine ("updatesource") which
keeps track of the "bad text" as each token is discarded during the recovery
for later underlining of the affected source. One variable used here whose
use may not be easily understood is "oldpos", which is necessary to hold
the starting position of each lexeme prior determining whether or not it will
be thrown away and, therefore, underlined. Control within this module is
accomplished via a repeat-until loop, meaning, consume lexemes in the input ..
until one is found which meets the recovery criteria discussed above. } . -

var
returnptr: boxptr;

rp: stackptr;
newpos: boxptr;
oldpos: integer;

begin
rp:= stack;
oldpos:= 0;
lex.badtext:= true;
repeat

updatesource(error,lex.badtext ,oldpos,token,lex);
returnptr:= searchlist (rp,token);
stack:= rp;
if returnptr = intnil then

begin
newpos:= searchrestart(syntax.rstart,token);
if newpos <> intnil then

begin
push (activation,stack,diagrams [newpos] .name,exitrecovery,newpos);
returnptr:= computepos (diagrams,newpos,token);

end
else

end
else;
if returnptr < > intnil then
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begin
if returnptr <> syntax.last then

if printposit then
print (prresume,stack ,lex,syntax,token)

else
else;
lex.badtext:= false;
updatesource(error,lex.badtext,oldpos ,token ,lex);

end
else begin

lex.badtext:= true;
update(rp .next, intnil,'junk',exeme)

end;
oldpos: = (lex.chpos- 1) + lineoffset;
token: gettoken (lex,error,diagranis);
syntax.legal:= nil;

until (returnptr < > intnil) or (returnptr =syntax.last);

if returnptr = syntax.last then
print (preof,stack ,lexsyntax,token)

else;
update (stack ,returnptr,diagrams [returnptr] -name, diagrams [returnptr] .typ);
performrecovery:= diagrams [returnptr] .trueptr;

end;

{ ************************************************lip.*



ERROR RECOVERY DRIVER

procedure recover;
{ This is the driver for the error recovery mechanism. If recovery mode

is being entered due to the occurence of a new error, then a recovery record
is pushed onto the stack, all of the error data needed for producing an error
message is computed and saved, the recovery set is generated, and the
serach begins for a resynchronization symbol. If recovery mode is being

reentered, having just completed parsing a segment of text which began as a
result of a previously found restart symbol, then the recovery resumes by
searching the recovery set extending from the old record which has just
reappeared at the top of the parsing stack. The call to print in this module
is for the purpose of informing the user that an "end of program" (end.) has
been detected. Processing continues, however, to detect any errors in the
remaining text. }

begin
if stack .kind <> recovery then

with stack do
begin

if lasttrue syntax.eop then
print (preop,stack ,lexx,syntax,token)

else;
push (recovery,stack,name,last true,diagramhead);
recorderror(error,lexx,stack ,syntax);
genrecovset(stack,diagrams,recov);

end
else;
resumeptr:- perforrnrecovery(stack,diagrams,token,error,syntax,lexx);

end;
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#include "global.h"
# include "common.h"

ERROR HANDLING ROUTINES

ERROR MESSAGE PREPARATION ROUTINES

These routines are concerned with performing linked list operations , -

required for preparation of the error messages. Some of these
routines are utilized in connection with the "legal symbol list",
which is used to produce the error narrative that lists those
symbols which would have been syntactically legal at the point of
error detection. Additionally, the elements of the history list,
which contains those syntactic units which have been successfully
recognized prior to the point of error, are extracted and assigned
to an error message pointer for later display.

function findlegal;
{ This function searches the legal list and returns a boolean which is

used to prevent insertion of duplicate box names. }

var
found: boolean;

begin
found:= false:
while (p < > nil) and (not found) do

if diagrams[p .boxnum].name diagrams[pos].name then _-
found:= true

else
p:= p next;

findlegal:= found;
end;

procedure insertlegal;
This procedure adds an element to the legal list and is called by
both the parser and error handler. The parser inserts a symbol into
list upon exiting false from a lexeme box, and the error handler
determines the remainder of the symbols by examining those which were
not checked during normal execution. }

var
q,r: legalptr:
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begin
new(q);
q .boxnum:= pos;
q ̂ .next:= nil;
if p = nil then

p:= q
else begin

r:= p; J
while r .next <> nil do

r:= r .next;
r .next:= q

end
end; e --

i **** ** ** * ** *** ** ** *** ** ** ** ** ** * **** * *** *** *** * * **** * * **** *******

procedure recorderror;
{ This is the main routine for error message preparation. The following

actions are performed here: 1) the source position of the error is
recorded, 2) the name of the diagram in which the error occured is
saved (to output "bad..."), 3) the end of the history list is saved,
4) the contents of the legal list are saved, and 5) all of the various
components of the message are saved in a message record (the variable
"listing" below), which is a member of an error list for the current
line. Access to the messages for the line is provided through the
pointer variable "errptr". }

var
p,q: errorptr;

r: historyptr;
s: legalptr; [.j

begin
with lex,errorstack ^.next do

begin
new(p);
with p ^.listing do t.

begin
if list then

-. ~~errstart:= lastpos+l 1.:.:

else
errstart:= chpos;

diagname:= name;
starthist:= histptr;
r:= starthist;
if r < > nil then
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begin
while r ^.next < > nil do

r:= r next;
endhist:= r

end
else;
s:= syntax.legal;
expected:= nil;
while s <> nil do

begin
insertlegal(s .boxnum,expected);
s:= s ^.next

end;
end;

p .next:= nil;
if errptr = nil then

errptr:= p
else begin . A

q:= errptr; L 4
while q' .next < > nil do

q:= q .next;
q .next:= p

end;
end;

end;

• *********************************************************************

-- - - - - - - . .:.- . ;.-.
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procedure lexicalerror;
{ This routine records lexical stage errors and enters them into a

lexical error linked list. This list is later merged with the syntactic

error list permitting output routines to traverse one list in displaying

all the error information occuring on a given line. Based on the call
parameter indicating lexical id, the appropriate message is retrieved -
and stored for output at end of line. }

var
p,q: lexerrorptr;

text: lexmessage;

procedure getmessage(num: lexvalue; var text: lexmessage);

begin
if num ord(illegal) then

text:= 'illegal character(s)'
else if num = ord(badcomment) then

text:= 'unclosed comment detected'
else if num = ord(badexpon) then

text:= 'digit,+,- must follow "e"'
else if num = ord(baddecpt) then

text:= 'digit(s) must follow dec pt.'
else if num = ord(badsign) then

text:= 'digit(s) must follow sign in exponent'
else if num = ord(badstring) then

text:= 'unclosed string quote at end of line'
else if num = ord(zerostring) then

text:= 'zero string constant not allowed'
else if num = ord(badexpart) then

text:= 'illegal exponent in real constant'
else if num = ord(baddecimal) then

text:= 'illegal rt side of decimal pt.'
else if num = ord(nodigits) then

text:= 'digit(s) must come before dec pt.'
end; {get message}

begin {lexicalerror}
with error,lexx do ni

begin
' - new(p);

with p .listing do

begin
if list then
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errpos:= lastpos+1
else

errpos:= chpos;
typ:= num;
getmessage(num,text);
message:= text;

end;
p .next:= nil;
if lexerrptr = nil then

lexerrptr:= p
else begin

q:= lexerrptr;
while q .next <> nil do

q:= q .next;
if q .listing.typ < > ord(badcomment) then

q .next:= p
else

end
end;

end; {lexicalerror}

procedure collecterrors(q: lexerrorptr; r: errorptr; var s: errormark;

var lastmark: integer);
{ This routine takes the input lexical and syntactic error pointers

(locally as pointers "q" and "r" respectively) and merges the
error position information from the two lists. Lexical errors are
noted with a '1' and syntactic with an 's', in the event that multiple
errors occur at the same point on the line (and if so, lexicals will r
be output first). This information is later used by the error message
driver routine to control the order of the message output processing.

The variable "listing" used here, and in other error message routines, . .

is the record of error information for each error, which contains the
history list pointer, legal list pointer, diagram name, and the error
position. }

var

p,t: errormark;
begin[

while (q <> nil) or (r <> nil) do
begin

new(p);
if (q <> nil) and (r <> nil) then

if q .listing.errpos <= r .listing.errstart then
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begin
p .pos:= q .list ing.errpos;

q:= q .next
end

else begin
p ^.pos:= r .listing. errstart;
p ^typ:= s';
r:= r .next

end
else if (q <> nil) then

begin
p ^.pos:= q ^.listing.errpos;
p .typ:= '1;
q:= q ^.next

end
else begin

p ^.pos:= r ^.listing.errstart;
p .typ:= 's';
r:= r .next

end;
if s = nil then

s:= p
else begin

t: = S;
while t ^.next < > nil do

t:= t ^.next;
t ^.next:= p

end;
if (q = nil) and (r = nil) then

lastmark:= p .pos + lineoffset- 1
else

end;
end;
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ERROR MESSAGE DISPLAY UTILITIES
• ********************************************************************} ::::

procedure updatesource;
{ This routine records the line start and stop positions for those

lexemes which are discarded during error recovery. This information
is later used by the "underline" routine in marking the affected text.
The algorithm here is as follows: 1) if the call parameter badstuff
is false (meaning recovery has occured), then find the last element in
the "garbled" linked list and record the "junk" stop position; if this
posit equals the start position, then recovery occured immediately
without consuming text and the stop posit becomes one less than the start
to indicate that no underlining should be performed; otherwise, mark the
stop posit. 2) if the call is true, but no stop was enterd for the last
item in the list, then a new list element is not neceasary since the
recovery has not yet occured (thus underlining should continue). 3) and
finally, if the call is true and the list is empty, create a new node and
enter the start position. }

var
p,q: garbledptr;

begin
with error,lex do

begin ,
if badstuff then

if garbledlist = nil then
begin

new(p);
p ^.next:= nil;
p .symb:= token;
if continue then

begin . .-
i: 1; *,.

while linebuqil = ' 'do
i:= i-Il;'-" .-

p .junkstart:= lineoffset + i;
continue:= false

end

else
p .junkstart:= chstart + lineoffset;

p .junkstop:= 0;

garbledlist:= p
end
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else begin
p:= garbledlist;
while p .next <> nil do

p:= p next;

if p ^.junkstop < > 0 then
begin

new(q);
q .next:= nil;
q .symb:= token;
q .junkstart:= chstart+ lineoffset;
q .junkstop:= 0;
p .next:= q

end :---
else

end
else begin

p:= garbledlist;
while p .next < > nil do

p:= p .next;
if token = p .symb then

p .junkstop:= p .junkstart-1
else

p .junkstop:= oldpos;
end;

end
end;{ ********************************************************************}
procedure printmark;
{ The purpose of this routine is to display and align the vertical lines

which extend downward from the text source line from each error position
on the line. The call parameter for this module is a pointer to a
list of error positions on the source line. A counter is set to the left
edge of the display and a vertical bar is printed each time the counter M-

position equals one of the stored error positions in the list. }

var
lastpos: integer;

i: integer; "Al-
p: errormark;

begin
lastpos:= 0, .',"

i:= 10:
p:= errmarker;
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while p <> nil do
begin

if i = p .pos + lineoffset-1 then
begin

if i <> lastpos then
begin

if (lastpos = 0) and (i = lineoffset) then
write('I ':lineoffset + 1)

else
write('i ':i-lastpos);

lastpos:= i
end

else;
p:= p .next;

end
else;
if p <> nil then

if p .pos + lineoffset-1 <> lastpos then
i:= i+1

else
else;

end;
end;

procedure underline(p: garbledptr; q: errormark; lastpos: integer);
{ This routine underlines any text on the source line which was discarded

during the error recovery process. The call parameter "garbledptr" is **..-

a pointer to a list which contains the start and stop line positions
for all "junk" that was previously recorded by the "updatesource"
routine. In this module, it is just a matter of extracting the start
and stop positions from each node in the list and printing a "%" symbol
when the incrementing line count is contained within the "junkstart"
to "junkstop" range. If a junk symbol position coincides with a vertical
line position (which extends downward from the error posit on the line) then .. .

the junk symbol is printed to permit clear visual recognition of the
discarded text. The underlining information is output from a line buffer
which contains either a blank space, a "%" symbol, or a "I" for each
line position, beginning with 1 (left edge) through 90 (80 column display
plus 10 (line offset) for the line numbers. }

type
linebuf = packed array[1..displayedge] of char;

var
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iinteger;
line linebuf;

begin
if p <> nil then

begin
for i:= 1 to displayedge do

lineli]:= '

repeat -

if p .junkstart <= p - junkstop then
if (i >= p ^.junkstart) and (I < p .junkstop) then

begin
line~i]:= '%'V;

i:= i+1
end

else if i = p .Junkstop then
begin

line[i]:= ;

i:= i+1;

p:= p .next
end

else i:= i+1
else if p ^.junkstop =0 then

if (i > = p .junkstart) and (i <= lastpos+ lineoffset) then -

begin

i:= i+1
end

else i:= i+1

else p:= p ^ .next
until (p =nil) or (i =displayedge+ 1);

if q <> nil then
repeat

if i = (q .pos-1+lineoffset) then
begin

if line~i] <> '0/' then
line[i] :=

else; <nlte

if q ^ pos < > q next >pos then
i:= i+1 *

else
else;
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q:= q ^.next
end

else
i:= i+ 1;

until (q =nil) or (i =displayedge+1)

else;

while (i <= displayedge) and
((linelil = )or (line[i] = ~')do

i:= i+ 1;
if i <> displayedge+1 then

begin
for i:= 1 to displayedge-1 do

write(line[il);
writeln (line [displayedge]);

end
else

end
else

end;

procedure formatline(p: errormark);
{Formatline is primarily responsible for the horizontal component
of the error message lines. These begin at the base of each vertical
error line and extend to the right through column position 90.
Since multiple errors may occur on one line, this routine resolves
conflicts between the vertical bar (" )and the horizontal bar(I)

in those situations where the lines cross, with priority being given
to the vertical bar. Additionally, this routine also prints the line
message header * *Error ".}

var

begi integer; -.-

printmark(p);
writein;
write(C** **Error T)
last:= lineoffset;.4
write('i':p ^.pos + lineoffset-I - last); 1

last:= p ^.pos + lineoffset-1;
p:= p .next;
if last = p ^.pos + lineoffset-1 then

p:= p ^.next;
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for i:= last+1 to displayedge do
if p < > nil then

if i= p ^.pos + lineoffset-1 then

begin
write('I ');
p:= p ^.next

end
else

write('j)
else

write( 'j)
end;

function findtextend;
{This routine is used to determine the position where actual program
text terminates on a line to prevent underlining of trailing edge
comments.}

var
found: boolean;

nested: boolean;
last~i: integer;

begin
with lexx do

begin
i:= lastpos;
last:= lastpos;
nested:= false;
found:= false;
if lastpos > 1 then

repeat
if linebufli] "' then

repeat

until (linebufli] < > ' )or (i =0)

else if (linebufli] = })or ((linebufli]
and (linebufli-1i=] *) then

begin L
last:= i;

repeat
i:= i-1

until (linebuf[i] 'J' or ((linebufli] A
and (linebuqi-1] or (i =0) or
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((linebuflil '' or ((linebuflil
and (linebuf~i-1]

if i > 0 then
if (linebuflil '' or ((linebufli]

and (linebufli-1] 1 *) then
nested:= true

else if linebufli] =''then

i:= i-2
else

else
end

else
found:= true

until (found or (i =0) or nested)
else

end;
if nested then

findtextend:= last
else

findtextend:=
end;

ERROR MESSAGE DRIVER

procedure errormessage;
{This routine coordinates the collection of the error information and
traversal of each linked list to output the error messages. This module
is called by the end-of-line procedure ("endline") immediately after
printing the line (if the error pointer is not nil). The code here
consists primarily those procedure calls required to output the lists and
the underline buffer(if required). Prior to returning to the endline--
routine, all error pointers are reset for the next line.}

var
errmarker: errormark;
lastmark: integer;

p: errorptr; 'K
q: lexerrorptr;

begin
with error do .

begin
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p:= errptr;
q:= lexerrptr;
errmarker:= nil;
collecterrors (q,p,errniarker,lastxnark);
if garbiedlist < > nil then

underline (garb ledlist ,errrnarker,lexx. textend);
while errrnarker <> nil do

begin
with p ^.listing,q ^.listing do

begin
formatline(errmarker);
if errmarker .typ T 1 then

begin
writeln (message);
q:= q ^.next

end
else begin

writeln('Bad ...... diagname: length (diagname),")
outputhistory (starthist ,p ,errmarker,lastmark);
output legal (expected,p ,errmarker,lastmark ,diagrams);
p:= p next;

end;
end;

errmarker:= errmarker ^.next;
end;

garbledlist:= nil;
lexerrptr:= nil;
errptr:= nil;I end;

end;
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#include "global.h"
#include "common.h"

OUTPUT ROUTINES

ERROR MESSAGE OUTPUT ROUTINES{ ***********************~******~* ******************* $' ' '

These routines output the contents of the history and legal lists. Much
of the code in the following two modules is very similar, however, Pascal's
strong typing precludes combining operations involving the different
types "historyptr" and "legalptr".

procedure outputhistory;
{ The history list output consists of writing "Recognized: " followed

by the name of each syntactic unit which is stored in the history list.
If the name represents a nonterminal box, then the output will be
of the form '< name >', as opposed to just 'name' for lexemes. If the
list contains more than 6 elements, then only the first 3 and last 3
will be shown, with three each on either side of the "..." notation.

As is also the case with the legal list, a line counter is maintained to
keep track of spacing contraints so that the message remains contained
within the 132 column boundary. The constant "justifyl" represents the
field width necessary to position the header, "justify3" for the items in
the list, and "spacel" and "space2" are used in calculations for the
right edge boundary. Finally, since the message may be followed by others
which pertain to the same line of source text, these routines must access
the "errormark" list to maintain any required preceding vertical marks which
are produced by the "printmark" display uitlity. }

var
currentpos: integer;

count: integer;
total: integer;

function getlength(p,q: historyptr): integer;

var i: integer;

begin
i:= 0;
repeat

i:= i+1;
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p:= p next
until (p=q)
getlength:= i+1

end; {getlength}

begin
if r ^next < > nil then

begin _

printmark(r -. next);
write ('Recognized: ':Justify 1-lastmark)

end
else

write ('Recognized: ':Justifyl);
currentpos:= justify 1+1;
if p < > nil then

begin
with q .listing do

if starthist <> endhist then
begin

total:= get length (p,endhist);
count:= 1;
repeat

if (total > maxhistoryitems) and
(count = maxhistoryitems-2) then

begin
p name:=''
p .typ:= lexeme

end
else; -

if length(p^.name)+spacel <= lineprintwidth-currentpos then
begin

if p ^.typ =lexeme then
begine

write(p ^.name:length(p ^.name),'')
currentpos: = currentpos± length (p -. name)+ 1

end
else begin

write('< "p ^.name:length(p ^.name),'>')
currentpos:= currentpos +length (p ^.name) +3

end
end

else begin

writein;
if r ^.next < > nil then



begin
printmark(r ^.next);
write(' ':Justify3-lastmark);
if p ^.typ = lexeme then

begin
write(p ^.name: length (p .name),'')
currentpos:= justify3 +length (p .namne)+1

end
else begin

write('< "p .narne:length(p .name),'> )
currentpos:= justify3+ length (p ^.nanae) +3

end
end

else begin
write(' ':Justify3);
if p -. typ =lexeme then

begin
write(p ^.name:length(p ^.name),'')
currentpos:= justify3 +length (p ^.nanie)+1

end
else begin

write('< ',p ^.narne:length(p ^.name),'>')
currentpos:= justify3+length(p ^.nanie)+3

end
end;

end;
if (total > maxhistoryiterns) and

(count = maxhistoryiteins-2) then
while (total-count) >= maxhistoryiterns div 2 do .)

begin
count:= count+1;
p:= p .next

end
else begin

count:= count+1;
p:= p next

end
until (p = endhist) *

end
else;
if length(p ^.name)+spacel <= lineprintwidth-currentpos then

if p ^.typ = lexeme then
writeln(p ^.namne: length(p ^.name))

else
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writeln('< ',p ^.name:length(p ^.name),'>')
else begin

writein;
if r ^next < > nil then

begin
printmark (r .next);
write(' ':justify3-lastmark);
if p ^.typ = lexeme then

writeln(p ^.name: length(p ^.name))
else

writeln('< ',p ^.name:length(p ^.name),'>')
end

else begin
write(' ':Justify3);
if p'.typ = lexeme then

writeln(p ^.name: length(p ^.name))
else

writeln('< ',p ^.name:length (p ^.name),'>')
end

end
end

else
writeln ('nothing yet in ',q^.listing.diagname:

length(q .Iisting. diagname));
end;
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procedure outputlegal;
This module is much like outputhistory with only a few differences.
Since the legal list is only concerned with lexemes, the "< >" notation
is not required, but rather all names are simply shown as "name". The
constant "justify2" is computed to properly justify the phrase "Legal
would have been: ", which is output as a header to the list. If the
list requires more than one line, justification reverts to "justify3" in
order to line up with the history list output. All items are output
irregardless of the length of the legal list, since this information may be
especially important to the novice programmer. .

var
currentpos: integer;

begin
if r '.next < > nil then

begin
printmark(r ^.next);
write('Legal would have been: ':justify2-lastmark)

end
else

write('Legal would have been: ':justify2);
currentpos:= justify2+1;
if p ^.next < > nil then

with q .listing do
begin "',

repeat
if length(diagrams[p .boxnum].name) +spacel <=

lineprintwidth-currentpos then
begin

write("',diagrams[p .boxnum].name:
length (diagrams [p .boxnum] .name) ,'",');

currentpos:= currentpos+ length(diagrams[p .boxnum].name) +3
end

else begin
writeln;
if r ^.next < > nil then

begin
printmark(r ^.next);
write(' ':justify3-tastmark);
write('",diagrams[p .boxnum].name:

length (diagrams [p .boxnum].name),'",');
end

else begin
write(' ':justify3);
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write ("" ,diagramns [p ^.boxn urn].name:
length (diagrams [p ^.boxnum] .name),".....

end;
currentpos:= just ify3 +length (diagrams [p .boxnumn]. name)+ 3;

end;
p:= p ^.next

until (p ^.next = nil);
if length(diagrams[p-.boxnurn].name)+space2 <=

lineprintwidth-currentpos then
writeln(' or "',diagrams[p ^.boxnum].narne:

length (diagrams [p ^.boxnum. .namne) ,"")

else begin
writein;
if r ^next < > nil then

begin
printrnark(r ^.next);
write(' ':Just ify3-lastmark);
writeln(' or "',diagrams[p ^.boxnum].name:

length (diagramns[p ^.boxnum] .name),");
end

else begin
write(' ':justify3);.
writeln(' or "',diagrarns~p -. boxnuml.naxne:

length (diagrams [p .boxnum]. name),"");
end

end
end

else
writeln ("" ,diagrams [p -. boxnuml .narne:

length (diagrams [p ^.boxnun] .name),"")
end;
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PRINT UTILITIES{********************************************************************} .%'-

{ These routines output various messages and debugging information as
selected by the command line switches. With the exception of the
EOF/EOP messages, these features are not operationally part of the
program, however, they provide convenient aids when experimenting or
performing maintenance related activities. }

{* ********************************************************************* ..

function length;
{ Returns the proper field width for the output }

var
i: integer;

begin
i:= 1;

while namei] <> ''do

i:= i+1;
length:= i-1;

end;{ ****************************************************** ***** ***** ****:::!

procedure printhist;
{ This procedure prints the contents of the history list if the

command line switch "printhistory" is activated. This routine is
called from procedure "update" after adding a new element. }

begin
writeln('History list:');
writeln;
while p <> nil do

begin
write(' ',p ^.name: length(p ^.name));
p:= p ^.next

end;
writeln;

end;{ ********************************************************************} .-. _

procedure print;
{ This routine outputs the contents of the stack, and messages for

end of file, parsing halts, and parsing resumes. Selection is
determined based upon one of the following switch call parameters: "- ":.
prstack, preof, preop, prhalt, prresume. }
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vair
pos,line: integer;

begin
with lexx do

begin
if list then

begin
pos:= lastpos;
line:= linenum+1

end

else beginI
pos:= chpos-1;
line.- linenum+1

end
end;

if switch = prstack then
begin

write in;
writeln('Stack configuration :)
while p <> nil do

begin
write(p ^.namne);
if ord(p ^.kind) =0 then

write ('act ivation')
else b

write ('recovery');
if p ^.kind <> recovery then

writeln(' ','lasttrue: ',p ^.lasttrue:3)
else

writeln('')
p:= p .next 1

end
else if switch =prhalt then

begin
writein;
writeln('token=',token);
writeln ('Entered recovery mode at line ',line:3,' pos '

pos:2,' on token "', syntax.name [token]:

length (syntax.name [token]),"");%%

end
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else if switch =prresume then
begin

writein;
writeln ('Resumed parsing at line ',line:3,' pos ',pos:2,

on token "', syntax.name [token]:'
length (syntax.name [token]),"");

writein; -- :

end -

else if switch =preof then
begin

writein;
writeln(' Unexpected EOF -- Compilation terminated');

end
else if switch -preop then

begin
writeln;
writeln( C~~ Detected end of program -- Expected EOF');

end
else

end; {print}

procedure printset;
{This routine is called by the recovery module if the "printrecovset"
switch is set on the command line. Output includes the name and
diagram position for each symbol in the recovery set.}

begin
writeln ('Recovery set:');
while p <> nil do

begin
with p do

writeln ( symbol =',name,' diagposit= ',diagrampos:4,

parentrec=', parentrec ^.namne);
p:= p .next

end;
writeln;

end; {printset}
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procedure printsyntax;
{This routine outputs the contents of the stored transition diagramis
in response to the command line switch "printbox".}

* -. var

i: integer;
begin

for i:= I to syntax.total do
with diagranis[i] do

begin
if ord(typ) =0 then

beginU writein;
write in;
writein;
writein

end;
write ('box= ',i:2,' type =',ord (typ) :1,' name= ',name,' code-'

,Iexcode:2,' true =',trueptr: 2,' false= 'falseptr:2);
* *writeln(' next =',nextptr: 2);

end;en
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#include "global.h"
#include "common.h"

INITIALIZATIONS

INITIALIZATION UTILITIES 71:
procedure addheadptr(var head: headptr: name: boxname; boxnum: boxptr);
{ This routine is called each time a header box is encountered in the input

file in order to keep track of whei., each diagram starts in memory. This
information is later applied to the "nextptr" field (recursive pointer) of
the nonterminal boxes, and is also used during the recovery to find out
where to recommence parsing if a new activation record needs to be added
to the existing stack. }

var
p,q: headptr;

begin
new(p);
p .name:= name;
p .boxnum:= boxnum;
p next:= nil;
if head = nil then

head:= p
else begin

q:= head;
while q" .next <> nil do

q:= q^ .next;
q .next:= p

end
end;

procedure addrestart(var head: restartptr; code: lexvalue;
pos: boxptr);

{ This routine is called when a "fiducial" symbol is encountered in the input
file. The resultant list is checked during the recovery process to see if
a fiducial (restart) symbol is present in the input stream. }

var
p,q: restartptr;

begin
new(p);
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p -token:= code;
p ^.boxnurn:= pos;
p ^next:= nil;
if head =nil then

head:= p
else begin

q:= head;
while q ^.next < > nil do

q:= q ̂ next;
q .next:= p

end
end;

procedure addrecov(var head: recovset; code: integer);

{This routine is called upon encountering a recovery symbol in the input
file. A check is included here to prevent duplicate entries since many
boxes have the same symbol name.}

var
p,q: recovset;

begin
new(p);
p ^.syxnb:= code;
p next:= nil;
if head = nil then
head:= p

else begin
j q:= head;

while (q^ .next <> nil) and (q^ .symb <> code) do
q:= q^.next;

if q~ .symb < > code then
q .next:= p

else
end

end;
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procedure getname(list: lexemelist; name: boxname; var lexname: syntaxunit);
{ This routine is called by initdiagrams to obtain the syntactic name

(enumerated type) for an input character string. The returned name is
then used to compute the code for a lexeme box. }

var
found: boolean;

i: integer;
begin

i:= 1;
found:= false;
while not found do

if name = list[i].id then
begin

found:= true;
lexname:= list[i].su

end
else

i:= i+ 1;
end;{ *********************************************************************} ;:.:.:,

procedure removespace(var ch: char);
{ Used by the diagram input routine to remove blanks between the

box data in the input file. }

begin
repeat
read(ch) 11 _

until (ch <> '') or eoln(input)
end;
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LEXICAL INITIALIZATION ROUTINES

procedure initlex(var lexx: lexparams);
{This routine initializes data for the lexical analyzer, including the
scanner table entries, reserved word list, lexeme name list, and all
legal Pascal characters.}

const
tabch =9

var
ij: integer;

begin
with Iexx do

begin

{(initialize reserved words }

id[O]:= 'do'; id[1I:= 'if'
id[21:=~ 'in'; id[3]:= 'of';
id[4]:= 'or'; id(51:= 'to';
id[6]:= 'and'; id[7]:= 'div';
id[8]:= 'end'; id[9P:= 'for';
id[1O]:= 'mod'; id[11]:= 'nil';
id[12]:= 'not'; id[13]:= 'set';
id[141:= 'var'; id[15J:= 'case';
id[l6l:= 'else'; id[17]:= 'file';iid[18]:= 'goto'; id[19]:= 'then';
id[201:= 'type'; id[21J:= 'with';
id[22] := 'array'; id[23] := 'begin';
id[24]:= 'const'; id[251:= 'label';
id[26]: 'until'; idt27]: 'while';
id[28]:= 'write'; id[291:= 'downto';
id[301: 'packed'; id[3lI: 'record';
id1321: 'repeat'; id[331: 'forward';
id [34J = 'program'; id[35]: 'writeln';
id[36]: 'function'; id[37J := 'procedur';

L
idlen[O]:= 0;
idlen[l]:= 0;
idlen[2]:= 6;- -

idlen[3J:= 15;
idlen[41:= 22;
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idlen[5]:= 29;
idlen[6]:= 33;
idlen[7]:= 36;
idlen[81:= 38;

{initialize lexeme char name/enumerated type name conversion}

listi [lI.id:= '';listl[1].su:= semicolon;

list1[3J.id:= :' listl[31.su:= colon;
listl[4].id:= ( ' listl[41.su:= clo rn;

listl[5].id:= )';listl[5].su:= rtparen;
listl[6].id:z= ' ,listl[61.su:= equals;

list 1[8] .id:~= ']I' listi [8] .su:= rtbracket;
listl[9].id:= '';listl[9].su:= period;
listl[10].id:- ' ' listi 10] .su:= pointer;
listl[11].id:- .' listl[11].su:= range;
listl[12].id: ' ' listl[12].su:= becomes;
listl[13].id:= 'or'; list113].su:= orr;
list1[14].id:= 'of'; listljl4].su:= off;
Iistl[15].id:= 'do'; ]istl 15].su:= doo;
listl[16] .id:= 'in'; list 1116] .su:= inn;
iist1[17].id:= 'if'; listl[17].su:= if;,
list1[181.id:= 'to'; listl[18].su:= too;
listl[19] .id:= 'and'; listil9.su:= andd;
listi [20] .id:= 'end'; listi [20] .su:= endd;
listl[21] .id:= 'set'; listl[21].su:= sett;
listi [22] .id:= 'var'; listl[22].su:= varr;
list 1[23] .id:= 'for'; listi [23] .su:= forr;
list1[241.id:= 'mod'; list1[24].su:= modd;
list 1[25] .id:= 'div'; list1[25].su:= divv;
list 1[26] .id:= 'nil'; listi [26] .su:= nill;
list 1[27] .id:= 'not'; listi [27] .su:= nott;
list 1 28j.id:= 'eof'; listl [28] .su:= endoffile;

list2[1] .id:= 'else'; list2[1] .su:= elsee;
list2[2].id:= 'then'; list2[2].su:= thenn;
list2[3] .id:= 'with'; list2[3] .su:= withh;
list2[4] .id:= 'ease'; list2[4] .su:= casee;
list2[5].id:=~ 'type'; list2[5].su:= typee;
list2[6] .id:= 'file'; list2[6] .su:= filee;
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list2[7] .id:= 'goto'; list2[7] .su:= gotoo;
list2[8] .id:= 'array'; list2 [81 .su: = arrayy;
list 2[9] Ad: = 'const'; list 2[9] .su: = constt;
list2[1O].id:= 'begin'; list2[10J.su:= beginn;.

-- list2[11].id:= 'while'; list2[11].su:= whilee;
list2[12].id:= 'until'; list2[12].su:= untill;
list2[13] .id:= 'write'; list2[13] .su:= writee;
list2[141.id:= 'label'; list2[141.su:= labell; .
list2[15].id:= 'packed'; list2[15].su:= packedd;
list2[16] .id:= 'repeat'; list2[16] .su:= repeatt;
list2[17].id:= 'record'; list2[171.su:= recordd;
list2[18] .id:= 'downto'; list2[18J .su:= downtoo;
list2[19] .id:= 'program'; list2[19] .su:= programm;
list2[20] .id:= 'forward'; list2[201.su:= forwardd;
list2[21] .id:= 'function'; list2[21].su:= ifunction;
list2[22] .id:= 'procedure'; list2 [221 .su:= pprocedure;
list2[23].id:= 'writeln'; list2[231.su:= writelnn;
list2 [24] .id:= 'identifier'; list2[24] .su:= identifier;
list2[25] .id:= 'unsigned real'; list2[25] .su:= realconst;
list2 [26] .id: = 'endmarker'; list2[26] .su:= endmarker;
list2[27] .id: = 'unsigned integer'; list2[27] .su:= intconst;
list2 r28] .id:= 'character string'; list2[28J .su:= stringconst;
list~..2g].id:= 'adding operator'; list2[291.su:= addop;
list2[30J .id: = 'multiplying operator'; list2 [301 .su:= mulop;
list2[3 1].id: = 'relational operator'; list2 31] .su:= relop;

{initialize scanner table entries}

for i:= 0 to statetotal do
for j:= 0 to inpsymtotal do

begin
tab[ij]:= -1;
if i > = 32 then

begin 
..-

tab[i,91:= i;
tab ji,19]:= i;

tab[i,21]:= ir
end;

tab[15,j]:= 15; tab[16j]:= 15;
tab[20j1:= 21; tab[21j]:= 21;
tab[11,13]:= 19; tab[14,9J:= 18;

end;
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7a[,0: 1;7770 .......2 a[02:=2 ab03=3

tab[0,4]:= 4; tab[0,11:= 6; tab[0,6]:= 7; tab[0,7]:= 9;
tab[0,8J:= 1; tab[0,9]:= 6; tab(0,610: 2; tab[,1]:= 3;
tab[O,1:= 1; tab[,1]:= 1; tab[0,1]:= 1; tab[0,15]:= 1;
tab[0,16]:= 14; tab[0,131:= 29; tab[0,141:= 20; tab[0,20]:= 0;
tab[O,1]:= 23; tab[O,23]:= 29; tb011=2; tb021=0
tab[0,211:= 5; tab[0,,5]:= 5;
tab[345:= 5; a[,1=5
ta.b[7,5]:= 5;
ta-b[11,9:= 1; tb1,1 4
tb1,11;tab[14,2]1:= 15;
tab[15,21:= 16; ta[51:=0
tab[15,2]:= 16; a[51]=0
tab[16,13: 06; tb[61]=0
tab[20,13]:= 0; a[61:=0

* tab[20,18]:= 22;
tab[22,18]:= 21;
tab[23,1]:= 2;tb[31]=2;t[3,]:2;
t[2,]2;tab[24,9]:= 32; tab[24,19]:= 32; tab[24,21J:= 28;
tab[24,01:= 33; tab[24,91:= 31; tab[25,13]:= 31; tb2,1: 8
tab[25,19:= 33; tab[25,21:= 2; tb2,3: 1
tab[26,19]:= 33; tab[26,9: 4tb2,21]:= 26;
tab[26,9]:= 32; tab[27,19]:= 2; tab [27,211:= 28;
ta[79: 2 a[711=3;tab[2,21]:= 28;
tab[29,23]:= 29;

tab[30,18]:= 21;

{initialize lexeme representations for table}

tab[0,24J := ord(stop); tab[1 ,24] := ord(addop);
tab[2,24] := ord(inulop); tab[3,24] := ord(relop);
tab [4,241 := ord(relop); tab [5,24]: ord(relop);
tab [6,24]:= ord(equals); tab[7,24] := ord(colon);
tab [8,24] := ord(becomes); tab [9,24] := ord(comma);
tab[10,24] := ord (semicolon); tab[1 1,24]: = ord(period);
tab [12,241= ord(range); tab[13,24] := ord(pointer);
tab[14,24] := ord(lftparen); tab[15,24] := ord(badcomrnent);
tab [16,24]:= ord(badcomment); tab[1 7,24] : ord(rtparen);
tab [18,24]: = ord (lftbracket); tab[19,24]:= ord (rtbracket); -

tab [20,241 := ord(badstring); tab[21 ,24] := ord(badstring);
tab 122,24]: = ord (stringconst); tab[23 ,24] := ord(intconst);
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tab[24,24 := ord(badexpon); tab[25,24J := ord(baddecpt);
tab[26,24]: ord(realconst); tab[27,24]: ord(badsign);
tab[28,24] := ord(realconst); tab[29,24]: ord(illegal);
tab[30,241: ord (zerostring); tab [3 1,24]: ord (intconst);
tab [32,24]: = ord (badexpart); tab [33,24]: ord(baddecimal);
tab[34,241:= ord(nodigits);

{initialize table index characters}

chrs[O].ch:= ' ;chrs[0].val:= 20; chrs[1].ch:= ';; chrs[1].val:= 8;
chrs[2].ch:= ',;chrs[21.val:= 7; chrs[31.ch:= ':; chrs[3].val:= 6;
chrs[4].ch:= '=;chrs[4].val:= 5; chrs[5].ch:= '(; chrs[5].val:= 12;
chrs[6].ch:= ');chrs[6].val:= 13; chrs[7].ch:= .... chrs[71.val:= 18;
chrs[8].ch:= '>;chrs[8].val:= 4; chrs[O].ch:= '<; chrs[9].val:= 3;
chrs[10].ch:= ~*;chrs[1O].val:= 2; chrs[11].ch:= '/; chrs[11].val:= 1;
chrs[121.ch:= '+;chrs[12].val:= 0; chrs[13].ch:= '' chrs[13].val:= 0;
chrs[14J.ch:= '[;chrs[141.val:= 14; chrs[15].ch:= '1; chrs[15].val:= 15;
chrs[161.ch:= '{;chrs[16].val:= 16; chrs[17].ch:= '}; chrs[17].val:= 17;

chrs[20].ch:= 'e; chrs[20].val:= 19; chrs[21].ch:= 'E'; chrs[211.val:= 19;
chrs[22].ch:= '@'; chrs[22J.val:= 11;
chrs [23] .ch:= chr(31); chrs[23] .val:= 10;
chrs[24].ch:= chr(tabch); chrs[24] .val:= 20;

end; {with lexx do}
end;
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SYNTAX INITIALIZATION ROUTINES

procedure initdiagrams(var syntax: syntaxdata; var recov: recovdata;
var diagrams: syntaxchart; var lexx: lexparams);

{ This is the routine that loads the entire set of syntax diagrams into
memory from a preconstructed input file. The algorithm is designed to
read one diagram box per one line in the input file, and it expects to see
box data in the following order on the line: 1) relative boxnumber (i.e.
the header is #1, the first syntactic unit in the diagram is #2, etc.)
2) the box type (header, nonterminal,lexeme,recover,fiducial) where
"fiducial" and "recover" are also lexmes, but possess important recovery
characteristics, 3) the name of the box (as it appears in the drawings),
4) true exit pointer, and 5) false exit pointer. Although each diagram is
a separate entity as far as preparing the input file, the routine saves each
headptr as it is read, interconnecting the complete set of boxes. Thus,
frequent changes may be made, if desired, without necessitating any coding
changes. The head pointer of each diagram is then used to compute a "next"
pointer for all of the nonterminals (the next pointer for a nonterminal
tells the parser where to go in order to "expand").

Warning: Any line in the file which begins with a number will be regarded
as a box number, thus beginning a line of data. Any line not beginning with
a number is discarded. }

const
numbconvert = 48;

listllen = 4;
var

ch: char; L
chident: char;

length,i: integer;
boxnumber: integer;

lastptr: boxptr;
numbers: charset; L

names: lexemelist;
tokenname: syntaxunit;

begin
syntax.head:= nil;
syntax.rstart:= nil;
recov.symbols:= nil;
for i:= 0 to totallexemes do

syntax.n ij '.m fil
boxnumber:= 1;
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numbers:= ['0'.. '91;
repeat

if not eof(input) then
if not eoln(input) then

begin
removespace(ch);
if not (ch in numbers) then

readin (input)
else with diagrams [boxnumber] do

begin
i:= ord(ch)-numbconvert;
read(ch);
if ch in numbers then

i:= 1O*i + ord(ch)-numbconvert;
removespace(ch);
case ch of

'''H': be gin
typ:= header;
lastptr:= boxnumber;

end;
'n','N': typ:= nonterminal;

'r','R': typ:= lexemne;__
end;
chident:= ch;
repeat

read (ch)
until (ch '')

removespace(ch);
for length:= 1 to maxname do

naxne[length]:= ''

length:= 1;
repeat

namne[length]:= ch;V
length:= length + 1;
read(ch)

until (ch '

if typ = header then
addheadptr(syntax.head,name,boxnumber)

else;

if typ = lexeme then
begin

with lexx do
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if length <= listilen
then names:= list 1

else namnes:= list2;

getname(names,name,tokenname);
lexcode:= ord(tokenname); -

end
else

lexcode:= -1;
if (chident =fT) or (chident ='F') then 4

begin
addrestart(syntax.rstart,lexcode,lastptr);
addrecov (recov .symbols,lexcode)

end;%
if (chident 'r') or (chident = 'R') then

addrecov(recov.symbols,lexcode);
if name = 'endmarker' then

begin
diagrams[boxnumber] .name:-
syntax.eop := boxnumber

end
else if name 'eof' then

syntax.last:= boxnumber
else;

case typ of
header: nextptr:= boxnumber + 1;
lexeme: nextptr:= 0;
nonterminal: nextptr:= 0;

end;
read(trueptr);
read (falseptr);
if (trueptr > 0) and (lastptr > 1) then

trueptr:= trueptr + lastptr -1;

if (falseptr > 0) and (lastptr > 1) then C:
falseptr:= falseptr + lastptr -1;

boxnumber:= lastptr + i;
end;

end
else

read (ch)
else

d until eof(input);
syntax.total:= boxnumber-1;
for i:= 1 to syntax.total do



with. diagramsfi] do
if typ = nonterminal then

nextptr:= getheadptr(syntax.head,name)
else;

if printbox then
printsyntax(diagramssyntax);

end;

poeueiivr(var syntax: syntaxdata; var error: errordata;
var lexx: lexparams; var diagrams: syntaxchart);{This routine 'nitializes various lexical and syntactic variables

which require a value before commencing syntactic analysis.}

var
1: integer; 

-

begin
with error do

begin
errptr:= nil;
lexerrptr:= nil;
garbledlist:= nil;

end;
with syntax do

begin
legal:= nil;
name [ord (illegal)] := 'illegal character';
namelord(badconiment)J := 'unclosed comment'

end;
with lexx do

begin

number:= [VO..'9'J;

expon:= ['E','e']
limit:= false;
comnments:= false;
continue:= false;
badtext:= false;
count:= 0;
chpos:= 0;
linenum:= 0;
ch:='
oldline:= false;
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for i:= 1 to maxline do
begin

linebuf~i]:- '

auxbuqi:'; V...

end;
list:= false;
eol:= eoln(input);
ch:= getchr(len,error,diagrarns);

end;
end;

INITIALIZATION DRIVERJ

procedure initialize;

begin

initlex(lexx);

reset (input,'syntax.ipt');

initdiagrains(syntax,recov,diagranis,lexx);2
reset (input ,filename);

end;
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TRANSITION DIAGRAM INPUT FILE

This is the input file for the parser which contains the specification for each

transition diagram (shown in Appendix B). The information- in this file is read

by an input routine, storing the information for later use by the parser during

syntactic analysis. The following information is contained in the input file:

Box # -- position within the transition diagram, with the header as #1.

Type -- three types of boxes: header, lexeme, nonterminal. If a lexeme is to
be designated a either a resynchronization or restart symbol for error
recovery, then "recover" is used to specify a resynchronization symbol and

"fiducial" is used for the restart symbols.

Name -- name of the box

Trueptr -- true exit path for the box, i.e. which box is next along the true
exit path.

Falseptr -- same as for true, but using the false exit path.

Trueptrs or Falseptrs which are associated to either a return true, return

false, or error exit are represented in the input file by "-1" for return true, "-2"

for return false, and "-3" for an error exit. Comments concerning the input file

routine are contained in the initialization section of the listings.
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PROGRAM

Box# Type Name Trueptr Falseptr

1 header Program 2 2

2 fiducial program 3 -3

3 lexeme identifier 4 -3

4 recover (5 8

5 lexeme identifier 6 -3

6 recover )8 7

7 recover 5 -3

8 recover 9 -3

9 nonterminal block 10 -3

10 recover endmarker 11 -3

11 recover eof -1 -3

BLOCK

Box# Type Name Trueptr Falseptr

1 header block 2 2

2 nonterminal label declaration 3 8

3 nonterminal constjdeclaration 4 4

4 nonterminal type declaration 5 5

5 nonterminal var declaration 6 6

6 nonterminal, proc/func declaration 7 7L

7 nonterrninal compound statement -1 -3

8 nonterminal const declaration 4 9

9 nonterminal type declaration 5 10

10 nonterminal var declaration 6 11

11 nonterminal proc/func declaration 7 12

12 nonterminal compound statement -1 -2
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LABEL DECLARATION

Box# Type Name Trueptr Falseptr

1 header label declaration 2 2

2 fiducial label 3 -2

3 lexeme unsigned integer 4 -3

4 recover -1 5

5 recover 3 -3

CONST DECLARATION

Box# Type Name Trueptr Falseptr

1 header const declaration 2 2

2 fiducial const 3 -2

3 lexeme identifier 4 -3

4 recover =5 -3

5 nonterminal constant 6 -3

6 recover 7 -3

7 lexeme identifier 4 -1

TYPE DECLARATION

Box# Type Name Trueptr Falseptr

1 header type declaration 2 2

2 fiducial type 3 -2

3 lexeme identifier 4 -3

4 recover =5 -3

5 nonterminal type denoter 6 -3

6 recover 7 -3

7 lexeme identifier 4 -1
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VAR DECLARATION

Box# Type Name Trueptr Falseptr

1 header var declaration 2. 2

2 recover var 3 -2

3 lexeme identifier 4 -3

4 recover 6 5

5 recover 3 -3

6 nonterminal type denoter 7 -3

7 recover 8 -3

8 lexeme identifier 4 -1

PROCEDURE AND FUNCTION DECLARATION PART

Box# Type Name Trueptr Falseptr

1 header proc/func declaration 2 2

2 fiducial procedure 3 8

3 lexeme identifier 4 -3

4 nonterminal, formalyparamneter list 5 5
5 recover 6 -3

6 recover forward 14 7 *

7 nonterminal, block 14 -3

8 fiducial function 9 -2

9 lexeme identifier 10 -3

10 nonterminal formalyparameter list 11 12

11 recover 13 -3

12 recover 13 5

13 lexeme identifier 5 -3

14 recover 15 -3

15 fiducial. procedure 3 16

16 fiducial, function 9 -1
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COMPOUND STATEMENT

Box# Type Name Trueptr Falseptr

1 header compound statement 2 2

2 fiducial begin 3-

3 nonterminal statement 4 4

4 recover end -1 5

5 recover 3 -3

ORDINAL TYPE

Box# Type Name Trueptr Falseptr

1 header ordinal type 22

2 lexeme identifier 103

3 nonterminal constant 46

4 recover -3 5e-

5 nonterminal constant -1-3

6 recover (7 -2

7 lexeme identifier 8 -3

I 8 recover )-
9 recover 7 -3

10 recover .. 5 -1

162



TYPE DENOTER

Box# Type Name Trueptr Falseptr

1 header type denoter 2 2
" 2 nonterminal ordinaltype -1 3

3 recover 4 5

4 lexeme identifier -1 -3

5 recover packed 6 22

6 recover array 7 13

7 recover [ 8 -3

8 nonterminal ordinal type 9 -3

9 recover 1 10 12

10 recover of 11 -3

11 nonterminal type denoter -1 -3

12 recover 8 -3

13 recover record 14 16

14 nonterminal field list 15 -3 "

15 recover end -1 -3

16 recover set 17 19

17 recover of 18 -3

18 nonterminal ordinal type -1 -3

19 recover file 20 -3

20 recover of 21 -3 :- -

21 nonterminal typedenoter -1 -3

22 recover array 7 23

23 recover record 14 24

24 recover set 17 25

25 recover file 20 -2
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FIELD LIST

Box# Type Name Trueptr FaLseptr

1 header field list 2 2

2 lexeme identifier 3 9

3 recover 5 4

4 recover 11 -3

5 nonterminal type denoter 6 -

6 recover 10 -1

7 nonterminal variantpart 8 8

8 recover -1 -1

-9 nonterminal variantypart 8 -1

10 lexeme identifier 3 7

11 lexeme identifier 3 -3

VARIANT PART

Box# Type Name Trueptr FaLseptr

1 header variantypart 2 2

2 recover case 3 -

3 lexeme identifier 4 -

4 recover 5 6

5 lexeme identifier 6 -3

6 recover Of 7 -3

7 nonterminal constant 8 -3

8 recover 10 9

9 recover 7-

10 recover(11-

11 nonterminal field list 12 -3

12 recover )13 -3

13 recover 7 -
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FORMAL PARAMETER LIST

Box# Type Name Trueptr Falseptr

1 header formalparameter list 22

2 recover (3 -

3 recover var 4 10

4 lexeme identifier 5 -3

5 recover 76

6 recover 4

7 lexeme identifier 98

8 nonterminal conformant array schema 9 -3 I

9 recover )-1 19

10 lexeme identifier 5 11

11 recover procedure 12 14

12 lexeme identifier 13 -3

13 nonterminal formalyparameter list 9 9

14 recover function 15 -3

15 lexeme identifier 16 -3
16 nonterminal formalyparameter list 17 71* '

17 recover 18 -3

18 lexeme identifier 9 -3

19 recover 3 -3

ACTUAL PARAMETER LIST

Box# Type Name Trueptr Falseptr

1 header actualyparameter list 2 2 *

2 recover (3 -2

3 nonterminal expression 4 -3

4 recover )-1 5

5 recover 3 -3
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WRITE PARAMETER LIST

Box# Type Name Trueptr Falseptr

1 header writeyparameter list 2 2

2 recover (3 -

*3 nonterminal expression 4 -

4 recover 5 8

5 nonterminal expression 6 -3

6 recover 78

7 nonterminal expression 8 -

8 recover )-19
9 recover 3 -3

VARIABLE ACCESS

Box# Type Name Trueptr Falseptr

1 header variable access 2 2

2 recover [3 6

3 nonterminal expression 4 -

4 recover ]95
5 recover 3 -3

6 recover .7 8

7 lexeme identifier 9 -3

8 recover 9 -2

9 recover 3 10

10 recover .7 11

11 recover - 1I



STATEMENT

Box# Type Name Trueptr Falseptr

1 header statement 2 2

2 lexeme unsigned integer 3 4

3 recover 23 -3

4 lexeme identifier 5 9

5 nonterminal actual_parameter list -1 6

6 nonterminal variable access 7 22

7 recover 8 -3

8 nonterminal expression -1 -3

9 fiducial goto 10 11

10 lexeme unsigned integer -1 -3

11 fiducial write 12 13

12 nonterminal write_parameter list -1 -3

13 fiducial writeln 14 15

14 nonterminal writeparameterlist -1 -1 k ...

15 nonterminal compound statement -1 16

16 nonterminal if statement -1 17

17 nonterminal case statement -1 18

18 nonterminal repeat statement -1 19

19 nonterminal while statement -1 20

20 nonterminal for statement -1 21

21 nonterminal with statement -1 -2

22 recover 8 -1

23 lexeme identifier 5 24

24 fiducial goto 10 25

25 fiducial write 12 26

26 fiducial writeln 14 27

27 nonterminal compound statement -1 28
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28 nonterminal if statement -1 29

29 nonterminal case statement -1 30

30 nonterminal repeat statement -1 31

31 nonterminal while statement -1 32

32 nonterminal for statement -1 33

33 nonterminal with statement -1

EXPRESSION

Box# Type Name Trueptr Falseptr

1 header expression 2 2

2 nonterminal simple expression 3 -2

3 recover - 4 5

4 nonterminal simple expression -1 -3

5 recover relational operator 4 6

6 recover in 4 -1

SIMPLE EXPRESSION

Box# Type Name Trueptr Falseptr

1 header simple expression 2 2

2 lexeme addingoperator 3 5

3 nonterminal term 4 -3

4 lexeme adding_operator 3 6

5 nonterminal term 4 -2

6 recover or 3 -1

1.
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TERM

Box# Type Name Trueptr Falseptr

I header term 2 2

2 nonterminal factor 3 -2

3 lexeme multiplying operator 7 4

4 recover div 7 5

5 recover mod 7 6

6 recover and 7 -1

7 nonterminal factor 3 -3

FACTOR

Box# Type Name Trueptr Falseptr

1 header factor 2 2

2 lexeme unsigned integer -1 3

3 lexeme unsigned real -1 4

4 lexeme character string -1 5

5 recover nil -1 6

6 lexeme identifier 7 9

7 nonterminal actual_parameter list -1 8

8 nonterminal variable access -1 -1

9 recover [ 10 15

10 nonterminal expression 11 14

11 recover 12 13

12 nonterminal expression 13 -3

13 recover ]-1 14

14 recover 10 -3

15 recover ( 16 18

16 nonterminal expression 17 -3
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17 recover )-1 -

18 recover not 19 -2

19 nonterminal factor -1 -

CONSTANT

Box# Type Name Trueptr Falseptr

1 header constant 22

2 lexeme adding_operator 3 6

3 lexeme identifier -14

4 lexeme unsigned integer -15

-*5 lexeme unsigned real -1 -3

6 lexeme identifier -1 7

7 lexeme unsigned integer -1 8

8 lexeine unsigned real -

9 lexeme character string-12
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CONFORMANT ARRAY SCHEMA

Box# Type Name Trueptr Falseptr

1 header conformant array_s!chema 2 2

2 recover packed 3 13

3 recover array 4 -3 ~

4 recover 15 -3

5 lexeme identifier 6 -3

6 recover 7 -3

7 lexeme identifier 8 -3

8 recover 9 -3

9 lexerne identifier 10 -3

10 recover ]11 -3

11 recover of 12 -3

12 lexeme identifier -1 -3

13 recover array 14 -2

14 recover 15 -3

15 lexeme identifier 16 -3

16 recover .. 17 -3

17 lexeme identifier 18 -3

18 recover 19 -3

19 lexeme identifier 21 -3

-*20 recover 1s -3

21 recover ]22 20

22 recover Of 23 -3

23 lexeme identifier -1 24

4!24 nonterminal conformant arrayschema -1 -3
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IF STATEMENTt

Box# Type Name Trueptr Falseptr

1 header if statement 2 2

2 fiducial if 3 -2

3 nonterminal Boolean expression 4 -3

4 recover then 5 -3

5 nonterminal statement66
6 recover else 7 -
7 nonterminal statement -1 -

CASE STATEMENT

Box# Type Name Trueptr Falseptr

1 header case statement 2 2

2 recover case 3 -2

3 nonterminal expression 4 -

4 recover of 5 -3

5 nonterminal constant 6 -3

6 recover 8 7

7 recover 5 -

8 nonterminal statement99

9 recover 11 10

10 recover end -1 -

11 nonterminal constant 6 10
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REPEAT STATEMENT

Box# Type Name Trueptr Falseptr

1 header repeat statement22

2 fiducial repeat 3 -

3 nonterminal statement 4 4

4 recover until 56
5 nonterminal Boolean expression -13

6 recover 3-

WHILE STATEMENT

Box# Type Name Trueptr Fleptr

1 header while statement 22

2 fiducial while 3-2f

3 nonterminal Boolean expression 4 -

4 recover do 5- ,*

5 nonterminal statement-11
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FOR STATEMENT

Box# Type Name Trueptr Falseptr

1 header for statement 2 2

2 fiducial for 3 -2

3 lexeme identifier 4 -3

4 recover 5 -3 -

5 nonterminal expression 6 -3

6 recover to 7 10

37 nonterminal expression 8 -3

8 recover do 9 -3

9 nonterminal statement -1 -1

10 recover downto 7 -3

WITH STATEMENT

Box# Type Name Trueptr FaLseptr

1 header with statement 2 2

2 fiducial with 3 -2

3 lexeme identifier 4 -3

4 nonterminal variable access 5 5

5 recover do 67

*6 nonterminal statement -1 -

7 recover 3 -3
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